DOI QR코드

DOI QR Code

Identification of a Cupin Protein Gene Responsible for Pathogenicity, Phage Susceptibility and LPS Synthesis of Acidovorax citrulli

  • Received : 2021.09.01
  • Accepted : 2021.10.12
  • Published : 2021.12.01

Abstract

Bacteriophages infecting Acidovorax citrulli, the causal agent of bacterial fruit blotch, have been proven to be effective for the prevention and control of this disease. However, the occurrence of bacteriophage-resistant bacteria is one of hurdles in phage biocontrol and the understanding of phage resistance in this bacterium is an essential step. In this study, we aim to investigate possible phage resistance of A. citrulli and relationship between phage resistance and pathogenicity, and to isolate and characterize the genes involved in these phenomena. A phage-resistant and less-virulent mutant named as AC-17-G1 was isolated among 3,264 A. citrulli Tn5 mutants through serial spot assays and plaque assays followed by pathogenicity test using seed coating method. The mutant has the integrated Tn5 in the middle of a cupin protein gene. This mutant recovered its pathogenicity and phage sensitivity by complementation with corresponding wild-type gene. Site-directed mutation of this gene from wild-type by CRISPR/Cas9 system resulted in the loss of pathogenicity and acquisition of phage resistance. The growth of AC-17-G1 in King's B medium was much less than the wild-type, but the growth turned into normal in the medium supplemented with D-mannose 6-phosphate or D-fructose 6-phosphate indicating the cupin protein functions as a phosphomannos isomerase. Sodium dodecyl sulfa analysis of lipopolysaccharide (LPS) extracted from the mutant was smaller than that from wild-type. All these data suggest that the cupin protein is a phosphomannos isomerase involved in LPS synthesis, and LPS is an important determinant of pathogenicity and phage susceptibility of A. citrulli.

Keywords

Acknowledgement

The authors appreciate Professor Sang-Wook Han of Chung-Ang University, Republic of Korea for proving the Tn5 mutants.

References

  1. Barbu, E. M., Cady, K. C. and Hubby, B. 2016. Phage therapy in the era of synthetic biology. Cold Spring Harb. Perspect. Biol. 8:a023879. https://doi.org/10.1101/cshperspect.a023879
  2. Brockhurst, M. A., Koskella, B. and Zhang, Q.-G. 2021. Bacteria-phage antagonistic coevolution and the implications for phage therapy. In: Bacteriophages: biology, technology, therapy, eds. by D. R. Harper, S. T. Abedon, B. H. Burrowes and M. L. McConville, pp. 1-21. Springer, Cham, Denmark.
  3. Chatterjee, A., Willett, J. L. E., Nguyen, U. T., Monogue, B., Palmer, K. L., Dunny, G. M. and Duerkop, B. A. 2020. Parallel Genomics uncover novel enterococcal-bacteriophage interactions. mBio 11:e03120-19.
  4. Coons G. H. and Kotila J. E. 1925. The transmissible lytic principle (bacteriophage) in relation to plant pathogens. Phytopathology 15:357-370.
  5. Darveau, R. P. and Hancock, R. E. W. 1983. Procedure for isolation of bacterial lipopolysaccharides from both smooth and rough Pseudomonas aeruginosa and Salmonella typhimurium strains. J. Bacteriol. 155:831-838. https://doi.org/10.1128/jb.155.2.831-838.1983
  6. d'Herelle, F. 1926. The bacteriophage and its behavior. Williams and Wilkins, Baltimore, MD, USA. 629 pp.
  7. Doherty, M., Todd, D., McFerran, N. and Hoey, E. M. 1999. Sequence analysis of a porcine enterovirus serotype 1 isolate: relationships with other picornaviruses. J. Gen. Virol. 80:1929-1941. https://doi.org/10.1099/0022-1317-80-8-1929
  8. Eckshtain-Levi, N., Munitz, T., Zivanovic, M., Traore, S. M., Sproer, C., Zhao, B., Welbaum, G., Walcott, R., Sikorski, J. and Burdman, S. 2014. Comparative analysis of type III secreted effector genes reflects divergence of Acidovorax citrulli Strains into three distinct lineages. Phytopatholgy 104:1152-1162. https://doi.org/10.1094/PHYTO-12-13-0350-R
  9. Filippov, A. A., Sergueev, K. V., He, Y., Huang, X.-Z., Gnade, B. T., Mueller, A. J., Fernandez-Prada, C. M. and Nikolich, M. P. 2011. Bacteriophage-resistant mutants in Yersinia pestis: identification of phage receptors and attenuation for mice. PLoS ONE 6:e25486. https://doi.org/10.1371/journal.pone.0025486
  10. Guan, W., Wang, T., Huang, Q., Tian, E., Liu, B., Yang, Y. and Zhao, T. 2020. A LuxR-type regulator, AcrR, regulates flagellar assembly and contributes to virulence, motility, biofilm formation, and growth ability of Acidovorax citrulli. Mol. Plant Pathol. 21:489-501. https://doi.org/10.1111/mpp.12910
  11. Hassan, A. Y., Lin, J. T., Ricker, N. and Anany, H. 2021. The age of phage: friend or foe in the new dawn of therapeutic and biocontrol applications? Pharmaceuticals 14:199. https://doi.org/10.3390/ph14030199
  12. Khan Mirzaei, M. and Nilsson, A. S. 2015. Isolation of phages for phage therapy: a comparison of spot tests and efficiency of plating analyses for determination of host range and efficacy. PLoS ONE 10:e0118557. https://doi.org/10.1371/journal.pone.0118557
  13. Khuri, S., Bakker, F. T. and Dunwell, J. M. 2001. Phylogeny, function, and evolution of the cupins, a structurally conserved, functionally diverse superfamily of proteins. Mol. Biol. Evol. 18:593-605. https://doi.org/10.1093/oxfordjournals.molbev.a003840
  14. Kong, Q., Yang, J., Liu, Q., Alamuri, P., Roland, K. L. and Curtiss, R. 3rd. 2011. Effect of deletion of genes involved in lipopolysaccharide core and O-antigen synthesis on virulence and immunogenicity of Salmonella enterica serovar typhimurium. Infect. Immun. 79:4227-4239. https://doi.org/10.1128/IAI.05398-11
  15. Koskella, B. and Brockhurst, M. A. 2014. Bacteria-phage coevolution as a driver of ecological and evolutionary processes in microbial communities. FEMS Microbiol. Rev. 38:916-931. https://doi.org/10.1111/1574-6976.12072
  16. Koskella, B. and Meaden, S. 2013. Understanding bacteriophage specificity in natural microbial communities. Viruses 5:806-823. https://doi.org/10.3390/v5030806
  17. Lee, C., Mannaa, M., Kim, N., Kim, J., Choi, Y., Kim, S. H., Jung, B., Lee, H.-H., Lee, J. and Seo, Y.-S. 2019. Stress tolerance and virulence-related roles of lipopolysaccharide in Burkholderia glumae. Plant Pathol. J. 35:445-458. https://doi.org/10.5423/PPJ.OA.04.2019.0124
  18. Leon-Velarde, C. G., Happonen, L., Pajunen, M., Leskinen, K., Kropinski, A. M., Mattinen, L., Rajtor, M., Zur, J., Smith, D., Chen, S., Nawaz, A., Johnson, R. P., Odumeru, J. A., Griffiths, M. W. and Skurnik, M. 2016. Yersinia enterocolitica-specific infection by bacteriophages TG1 and ϕR1-RT is dependent on temperature-regulated expression of the phage host receptor OmpF. Appl. Environ. Microbiol. 82:5340-5353. https://doi.org/10.1128/AEM.01594-16
  19. Liu, H. and Naismith, J. H. 2008. An efficient one-step site-directed deletion, insertion, single and multiple-site plasmid mutagenesis protocol. BMC Biotechnol. 8:91. https://doi.org/10.1186/1472-6750-8-91
  20. Luo, J., Qiu, W., Chen, L., Anjum, S. I., Yu, M., Shan, C., Ilyas, M., Li, B., Wang, Y. and Sun, G. 2015. Identification of pathogenicity-related genes in biofilm-defective Acidovorax citrulli by transposon Tn5 mutagenesis. Int. J. Mol. Sci. 16:28050-28062. https://doi.org/10.3390/ijms161226076
  21. Marks, T. and Sharp, R. 2000. Bacteriophages and biotechnology: a review. J. Chem. Technol. Biotechnol. 75:6-17. https://doi.org/10.1002/(SICI)1097-4660(200001)75:1<6::AID-JCTB157>3.0.CO;2-A
  22. Meaden, S., Paszkiewicz, K. and Koskella, B. 2015. The cost of phage resistance in a plant pathogenic bacterium is context-dependent. Evolution 69:1321-1328. https://doi.org/10.1111/evo.12652
  23. Oechslin, F. 2018. Resistance development to bacteriophages occurring during bacteriophage therapy. Viruses 10:351. https://doi.org/10.3390/v10070351
  24. Park, J., Lee, G. M., Kim, D., Park, D. H. and Oh, C. S. 2018. Characterization of the lytic bacteriophage phiEaP-8 effective against both Erwinia amylovora and Erwinia pyrifoliae causing severe diseases in apple and pear. Plant Pathol. J. 34:445-450. https://doi.org/10.5423/PPJ.NT.06.2018.0100
  25. Pirhonen, M., Heino, P., Helander, I., Harju, P. and Palva, E. T. 1988. Bacteriophage T4 resistant mutants of the plant pathogen Erwinia carotovora. Microb. Pathog. 4:359-367. https://doi.org/10.1016/0882-4010(88)90063-0
  26. Rahimi-Midani, A., Kim, J.-O., Kim, J. H., Lim, J., Ryu, J.-G., Kim, M.-K. and Choi, T.-J. 2020. Potential use of newly isolated bacteriophage as a biocontrol against Acidovorax citrulli. Arch. Microbiol. 202:377-389. https://doi.org/10.1007/s00203-019-01754-5
  27. Rahimi-Midani, A., Lee, Y. S., Kang, S.-W., Kim, M.-K. and Choi, T.-J. 2018. First isolation and molecular characterization of bacteriophages infecting Acidovorax citrulli, the causal agent of bacterial fruit blotch. Plant Pathol. J. 34:59-64. https://doi.org/10.5423/PPJ.NT.08.2017.0190
  28. Szermer-Olearnik, B. and Boratynski, J. 2015. Removal of endotoxins from bacteriophage preparations by extraction with organic solvents. PLoS ONE 10:e0122672. https://doi.org/10.1371/journal.pone.0122672
  29. Tian, Y., Zhao, Y., Wu, X., Liu, F., Hu, B. and Walcott, R. R. 2015. The type VI protein secretion system contributes to biofilm formation and seed-to-seedling transmission of Acidovorax citrulli on melon. Mol. Plant Pathol. 16:38-47. https://doi.org/10.1111/mpp.12159
  30. Vu, N. T. and Oh, C.-S. 2020. Bacteriophage usage for bacterial disease management and diagnosis in plants. Plant Pathol. J. 36:204-217. https://doi.org/10.5423/PPJ.RW.04.2020.0074
  31. Watson, B. N. J., Vercoe, R. B., Salmond, G. P. C., Westra, E. R., Staals, R. H. J. and Fineran, P. C. 2019. Type I-F CRISPRCas resistance against virulent phages results in abortive infection and provides population-level immunity. Nat. Commun. 10:5526. https://doi.org/10.1038/s41467-019-13445-2
  32. Weisser, P., Kramer, R. and Sprenger, G. A. 1996. Expression of the Escherichia coli pmi gene, encoding phosphomannose-isomerase in Zymomonas mobilis, leads to utilization of mannose as a novel growth substrate, which can be used as a selective marker. Appl. Environ. Microbiol. 62:4155-4161. https://doi.org/10.1128/aem.62.11.4155-4161.1996
  33. Xu, C., Jin, M. and Zhang, X. 2019. Roles of microbial metabolites in bacteriophage-microbe interactions. In: Virus infection and tumorigenesis, ed. by X. Zhang, pp. 175-207. Springer, Singapore.
  34. Zhang, X., Zhao, M., Yan, J., Yang, L., Yang, Y., Guan, W., Walcott, R. and Zhao, T. 2018. Involvement of hrpX and hrpG in the virulence of Acidovorax citrulli strain Aac5, causal agent of bacterial fruit blotch in cucurbits. Front. Microbiol. 9:507. https://doi.org/10.3389/fmicb.2018.00507