• Title/Summary/Keyword: bacterial enzymes

Search Result 301, Processing Time 0.031 seconds

Effects of Acidification on the Species Composition and the Changes of Extracelluar Enzymes of Heterotrophic Bacterial Community (수계종속 영양세균 군집의 종조성 및 세포외 효소의 변화에 미치는 산성화의 영향)

  • Choi, Yong-Keel;Han, Myung-Soo;Kim, Sewha;Lee, Kyung;Yoo, Kwang-Il
    • Korean Journal of Environmental Biology
    • /
    • v.20 no.1
    • /
    • pp.85-90
    • /
    • 2002
  • In an artificial pH-gradient batch culture system, the author analyzed the effects of acidification on the species composition of heterotrophic bacteria. As the result of this study, it was found that the numbers of total bacteria were not affected by acidification and that the population size of heterotrophic bacteria decreased as pH became lower. The heterotrophic bacteria isolated from all of the pH gradient were 12 genera and 22 species, and among them, gram negative and gram positive bacteria were 04% and 30%, respectively. As pH decreased, the distribution rate of gram negative bacteria increased while that of gram positive bacteria decreased. Regarding to distribution rate of genuses in each pH gradient, 13 genuses appeared at pH 7 while only 5 genuses appeared at pH 3, which means that the diversity of genera decrease as pH decreased. The activities of extracellular enzyme showed the ranges of $0.008-0.292\;\mu{M}\ell^{-1}\;hr^{-1}$ in bioreactor system. The enzymatic activities decreased rapidly below pH 5 and then sustained 5-38% at the lower pH values.

Isolation and Characterization of Oligotrophic Strains with High Enzyme Activity from Buckwheat Sokseongjang (메밀 속성장 유래 효소활성 우수 저영양성 균주 분리 및 특성)

  • Lee, Sung-Young;Kim, Ji-Yeun;Baek, Sung-Yeol;Yeo, Soo-Hwan;Koo, Bon-Sung;Park, Hye-Young;Choi, Hye-Sun
    • Korean Journal of Food Science and Technology
    • /
    • v.43 no.6
    • /
    • pp.735-741
    • /
    • 2011
  • Bealmijang is a short-term fermented regional product that is prepared with soybean and extra ingredients. In this study, starter strain candidates were screened from Bealmijang for fermented soybean paste products. Twenty one bacterial strains producing extracellular enzymes (amylase, cellulase, protease, xylanase and lipase) were isolated from Bealmijang, buckwheat sokseongjang. The isolates were assessed for fibrinolytic and antibacterial activities, and salt tolerance. Strain HJ18-4, identified as Bacillus subtilis (AB601598) by biochemical properties (89.6%) and 16S rDNA sequencing (100%), showed the highest enzymatic, fibrinolytic, and antibacterial activities among the isolates. Although the growth of HJ18-4 was inhibited by the increase of NaCl concentration, the growth still exceeded that of B. subtilis KACC 10114 at 5% and 10% NaCl. These results suggest that B. subtilis HJ18-4 is suitable as a starter for soybean paste manufacture.

Physiological Characteristics and ACE Inhibitory Activity of Lactobacillus zeae RMK354 Isolated from Raw Milk (원유에서 분리한 Lactobacillus zeae RMK354의 생리적 특성 및 ACE 억제능)

  • Lim, Sang-Dong;Kim, Kee-Sung;Do, Jeong-Ryong
    • Food Science of Animal Resources
    • /
    • v.28 no.5
    • /
    • pp.587-595
    • /
    • 2008
  • In order to develop a new starter for fermented milk, 1037 bacterial strains were isolated from raw milk. The strain that showed excellent acid producing and angiotensin converting enzyme (ACE) inhibitory activity (88.6%) was selected and identified as a Lactobacillus zeae based on the result of API carbohydrate fermentation pattern and 16S rDNA sequence. Lactobacillus zeae RMK354 was investigated further to study its physiological characteristics. It showed strong ACE inhibitory activity compared with commercial LAB starters tested. The optimum growth temperature of L. zeae RMK354 was $40^{\circ}C$ and it took 10 hr to reach pH 4.3 under this condition. L. zeae RMK354 showed more sensitive to penicillin-G, bacitracin, novobiocin, in a comparison of 14 different antibiotics, and showed most resistance to polymyxin B and vancomycin. It showed higher esterase and leucine arylamidase activities compared with 16 other enzymes. It was comparatively tolerant to bile juice and able to survive at pH 2 for 3 hr. It showed inhibitory activity against Salmonella Typhimurium with the rate of 60%. Based on these and previous results, L. zeae RMK354 could be an excellent starter culture for fermented milk with high level of ACE inhibitory activity.

Solvent-tolerant Lipases and Their Potential Uses (유기용매 내성 리파아제와 그 이용가능성)

  • Joo, Woo Hong
    • Journal of Life Science
    • /
    • v.27 no.11
    • /
    • pp.1381-1392
    • /
    • 2017
  • This review described solvent-tolerant lipases and their potential industrial, biotechnological and environmental impacts. Although organic solvent-tolerant lipase was first reported in organic solvent-tolerant bacterium, many organic solvent-tolerant lipases are in not only solvent-tolerant bacteria but also solvent-intolerant bacterial and fungal strains, such as the well-known Bacillus, Pseudomonas, Streptomyces and Aspergillus strains. As these lipases are not easily inactivated in organic solvents, there is no need to immobilize them in order to prevent an enzyme inactivation by solvents. Therefore, the solvent-tolerant lipases have the potential to be used in many biotechnological and biotransformation processes. With the solvent-tolerant lipases, a large number insoluble substrates become soluble, various chemical reactions that are initially impossible in water systems become practical, synthesis reactions (instead of hydrolysis) are possible, side reactions caused by water are suppressed, and the possibility of chemoselective, regioselective and enantioselective transformations in solvent and non-aqueous systems is increased. Furthermore, the recovery and reuse of enzymes is possible without immobilization, and the stabilities of the lipases improve in solvent and non-aqueous systems. Therefore, lipases with organic-solvent tolerances have attracted much attention in regards to applying them as biocatalysts to biotransformation processes using solvent and non-aqueous systems.

Effects of Bisroot in the Diet on Growth, Body Composition, Immume responses of Nile Tilapia, Oreochromis niloticus (사료 중 비스루트가 나일틸라피아, Oreochromis niloticus의 성장, 체조성 및 면역 방응에 미치는 영향)

  • 김용화;오승용;황미혜;조재윤;박수일;김유희;윤길하;박정환
    • Journal of Aquaculture
    • /
    • v.11 no.4
    • /
    • pp.495-503
    • /
    • 1998
  • The present study investigated the effects of Bisroot, that contains live bacteria (Bacillus polyfermenticus, Bacillus mesentericus, Streptococcus faecalis, & Bifidobacterium breve) and digestive enzymes (protease, lipase), on the growth, body composition and immune response of Nile tilapia fingerlings. One percent of the Bisroot was added to the experimenta feed. All exprimental fish were fed for 60 days. The weigh gains among the experimental fish were not significntly different (P>0.05). Hematocrit value, hemoglobin, total protein, glucose, GOT, and GPT were unaffected by Bisroot treatment. However, it was observed that glucose, GOT, and GPT value in the fish that were fed Bisroot, were lower than the control. The complement activity ($CH_50$) tended to be significantly increased by Bisroot treatment, but not lysozyme activity. Phagocytosis and respiratory burst activities of macrophages in the head kidney were enhanced by Bisroot. Therefore, the Bisroot diet enhances the cellular immune activities were enhanced by Bisroot. Therefore, the Bisroot diet enhances the cellular immune activities of non-specific immune responses. When fish were challenged with a virulent strain of Edwardsiella tarda, the Bisroot treated fish were more resistant than the control. The present results suggest that the introduction of Bisroot into the diet of Nile tilapia could increase their resistance against bacterial infection, reduce fish mortality, and offers economic benefits.

  • PDF

Purification and Characterization of the Bacteriocin Produced by Lactococcus sp. KD 28 Isolated from Kimchi (김치에서 분리한 Lactococcus lactis가 생산하는 박테리오신의 정제 및 특성)

  • Lee, Ji-Young;Choi, Nack-Shick;Chun, Sung-Sik;Moon, Ja-Young;Kang, Dae-Ook
    • Journal of Life Science
    • /
    • v.25 no.2
    • /
    • pp.180-188
    • /
    • 2015
  • The bacterial strain isolated from Kimchi showed antibacterial activity against Micrococcus luteus IAM 1056. The selected strain was identified as Lactococcus lactis by 16S rRNA nucleotide sequence analysis and named as Lactococcus sp. KD 28. The treatment of culture supernatant with proteinase K removed antibacterial activity, indicating its proteinaceous nature, a bacteriocin. This bacteriocin was sensitive to hydrolytic enzymes such as ${\alpha}$-chymotrypsion, trypsin, proteinase K, lipase, ${\alpha}$-amylase and subtilisin A. The bacteriocin was highly thermostable and resistant to heating at $80^{\circ}C$ for up to an hour but 50 % of the total activity was remained at $100^{\circ}C$ for 30 min. The pH range from 2.0 to 8.0 had no effect on bacteriocin activity and it was not affected by solvents such as acetonitrile, isopropanol, methanol, chloroform and acetone up to 50% concentration. The bacteriocin showed antibacterial activity against M. luteus IAM 1056, Lactobacillus delbrueckii subsp. lactis KCTC 1058, Enterococcus faecium KCTC 3095, Bacillus cereus KCTC 1013, B. subtilis KCTC 1023, Listeria ivanovii subsp. ivanovii KCTC 3444, Staphylococcus aureus subsp. aureus KCTC 1916, B. megaterium KCTC 1098 and B. sphaericus KCTC 1184. The bacteriocin was purified through ammonium sulfate concentration, SP-Sepharose chromatography and RP-HPLC. The molecular weight was estimated to be about 3.4 kDa by tricine-SDS-PAGE analysis.

Non-ribosomal Ribosome Assembly Factors in Escherichia coli (Escherichia coli 에서 리보솜 조립과정에 관여하는 단백질들)

  • Choi, Eunsil;Hwang, Jihwan
    • Journal of Life Science
    • /
    • v.24 no.8
    • /
    • pp.915-926
    • /
    • 2014
  • The ribosome is a protein synthesizing machinery and a ribonucleoprotein complex that consists of three ribosomal RNAs (23S, 16S and 5S) and 54 ribosomal proteins in bacteria. In the course of ribosome assembly, ribosomal proteins (r-protein) and rRNAs are modified, the r-proteins bind to rRNAs to form ribonucleoprotein complexes which are folded into mature ribosomal subunits. In this process, a number of non-ribosomal trans-acting factors organize the assembly process of the components. Those factors include GTP- and ATP-binding proteins, rRNA and r-protein modification enzymes, chaperones, and RNA helicases. During ribosome biogenesis, they participate in the modifications of ribosomal proteins and RNAs, and the assemblies of ribosomal proteins with rRNAs. Ribosomes can be assembled from a discrete set of components in vitro, and it is notable that in vivo ribosome assembly is much faster than in vitro ribosome assembly. This suggests that non-ribosomal ribosome assembly factors help to overcome several kinetic traps in ribosome biogenesis process. In spite of accumulation of genetic, structural, and biochemical data, not only the entire procedure of bacterial ribosome synthesis but also most of roles of ribosome assembly factors remain elusive. Here, we review ribosome assembly factors involved in the ribosome maturation of Escherichia coli, and summarize the contributions of several ribosome assembly factors which associate with 50S and 30S ribosomal subunits, respectively.

Isolation of Mannanase-producing Bacteria, Bacillus subtilis WL-6 and WL-11, and Cloning and Characterization of Mannanase (Bacillus subtilis 분리균 2주 유래 mannanases의 특성 비교)

  • Yoon, Ki-Hong
    • Journal of Life Science
    • /
    • v.26 no.10
    • /
    • pp.1113-1120
    • /
    • 2016
  • Two bacterial strains producing extracellular man nanase were isolated from doenjang, a traditionally fermented soybean paste in Korea. The isolates, WL-6 and WL-11, were identified as Bacillus subtiis on the basis of their 16S rRNA gene sequences, morphological, and biochemical properties. Two genes encoding the mannanase of both B. subtilis WL-6 and B. subtilis WL-11 were each cloned into Escherichia coli, and their nucleotide sequences were determined. Both mannanase genes consisted of 1,086 nucleotides, encoding polypeptides of 362 amino acid residues. The deduced amino acid sequences of the two WL-6 and WL-11 mannanases, designated Man6 and Man11, respectively, differed from each other by eight amino acid residues, and they were highly homologous to those of mannanases belonging to the glycosyl hydrolase family 26. The 26 amino acid stretch in the N-terminus of Man6 and Man11 was a predicted signal peptide. Both Man6 and Man11 were localized at the level of 94–95% in an intracellular fraction of recombinant E. coli cells. The enzymes hydrolyzed both locust bean gum and mannooligosaccharides, including mannotriose, mannotetraose, mannopentaose, and mannohexaose, forming mannobiose and mannotriose as predominant products. The optimal reaction conditions were 55°C and pH 6.0 for Man6, and 60°C and pH 5.5 for Man11. Man11 was more stable than Man6 at high temperatures.

Changes in Microflora and Enzymes Activities of Traditional Kochujang Prepared with Various Raw Materials (담금원료에 따른 전통식 고추장의 숙성 중 미생물과 효소력의 변화)

  • Shin, Dong-Hwa;Kim, Dong-Han;Choi, Ung;Lim, Mi-Sun;An, Eun-Young
    • Korean Journal of Food Science and Technology
    • /
    • v.29 no.5
    • /
    • pp.901-906
    • /
    • 1997
  • In order to reproduce and improve quality of traditional kochujang, various raw materials were added to prepare kochujang by replacing part of the glutinous rice. Chemical composition, microbial characteristics and enzyme activities were investigated during fermentation. Crude protein and salt contents of kochujang did not change significantly during fermentation, but moisture contents increased linearly. The pH and titratable acidity of kochujang changed little in garlic added group. The viable cell counts of aerobic bacteria and yeasts in the kochujang increased until 60 days of fermentation and then decreased slowly except for the garlic added group in which they increased during the last period of fermentation. Aerobic bacterial count did not show any remarkable differences among the samples and slowly decreased after 60 days of fermentation. The activities of liquefying and saccharifying amylases decreased until 45 days, but increased at 60th day. Acidic protease activities of each group were strong during the initial period, but neutral protease showed the highest activity from the 30 to 45 days of fermentation. Protease activities increased by addition of soy sauce, Chinese matrimony vine and purple sweet potato.

  • PDF

Enhanced Extraction of Bioactive Compounds from Bee Pollen by Wet-grinding Technology (벌 화분에서 습식 나노화 공정에 의한 유효성분의 추출)

  • Choi, Yun-Sik;Suh, Hwa-Jin;Chung, Il Kyung
    • Journal of Life Science
    • /
    • v.26 no.6
    • /
    • pp.651-656
    • /
    • 2016
  • Bee pollen is produced by honeybees and is considered one of the most balanced and nourishing nutritional supplements available. Historically, bee pollen has been prescribed for its healing properties and consumed for its high-energy supply. Recent research has provided evidence that bee pollen has diverse biological activities, such as anti-oxidant, anti-inflammatory, anti-bacterial, and even anti-cancer effects. However, the outer membrane of the pollen grain, exine, is highly resistant to most acidic solutions, high pressure, and even digestive enzymes, and the resulting low bioavailability limits its nutritional and clinical applications. This study applied a wet-grinding method to destroy the exine effectively, and it then examined the pollen's enhanced biological activity. First, microscopic observations provided strong evidence that wet grinding destroyed the exine time-dependently. In addition, the content of polyphenols, well-known ingredients of bee pollen and used as internal standards for the quality control of commercial pollen preparations, increased up to 11-fold with wet grinding. Further, the anti-oxidant activity demonstrated on the ABTS anti-oxidant assay, as well as the DPPH radical scavenging assay, was also dramatically increased. Together, the results presented here support a new technology by which bee pollen can be used as a resource for medical, nutritional, and cosmetic applications.