Browse > Article
http://dx.doi.org/10.5352/JLS.2014.24.8.915

Non-ribosomal Ribosome Assembly Factors in Escherichia coli  

Choi, Eunsil (Department of Integrative Biology, Pusan National University)
Hwang, Jihwan (Department of Integrative Biology, Pusan National University)
Publication Information
Journal of Life Science / v.24, no.8, 2014 , pp. 915-926 More about this Journal
Abstract
The ribosome is a protein synthesizing machinery and a ribonucleoprotein complex that consists of three ribosomal RNAs (23S, 16S and 5S) and 54 ribosomal proteins in bacteria. In the course of ribosome assembly, ribosomal proteins (r-protein) and rRNAs are modified, the r-proteins bind to rRNAs to form ribonucleoprotein complexes which are folded into mature ribosomal subunits. In this process, a number of non-ribosomal trans-acting factors organize the assembly process of the components. Those factors include GTP- and ATP-binding proteins, rRNA and r-protein modification enzymes, chaperones, and RNA helicases. During ribosome biogenesis, they participate in the modifications of ribosomal proteins and RNAs, and the assemblies of ribosomal proteins with rRNAs. Ribosomes can be assembled from a discrete set of components in vitro, and it is notable that in vivo ribosome assembly is much faster than in vitro ribosome assembly. This suggests that non-ribosomal ribosome assembly factors help to overcome several kinetic traps in ribosome biogenesis process. In spite of accumulation of genetic, structural, and biochemical data, not only the entire procedure of bacterial ribosome synthesis but also most of roles of ribosome assembly factors remain elusive. Here, we review ribosome assembly factors involved in the ribosome maturation of Escherichia coli, and summarize the contributions of several ribosome assembly factors which associate with 50S and 30S ribosomal subunits, respectively.
Keywords
Escherichia coli; GTPase; helicase; ribosome; rRNA;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Daigle, D. M. and Brown, E. D. 2004. Studies of the interaction of Escherichia coli YjeQ with the ribosome in vitro. J Bacteriol 186, 1381-1387.   DOI   ScienceOn
2 Dammel, C. S. and Noller, H. F. 1995. Suppression of a cold-sensitive mutation in 16S rRNA by overexpression of a novel ribosome-binding factor, RbfA. Genes Dev 9, 626-637.   DOI   ScienceOn
3 Dutta, D., Bandyopadhyay, K., Datta, A. B., Sardesai, A. A. and Parrack, P. 2009. Properties of HflX, an enigmatic protein from Escherichia coli. J Bacteriol 191, 2307-2314.   DOI   ScienceOn
4 Datta, P. P., Wilson, D. N., Kawazoe, M., Swami, N. K., Kaminishi, T., Sharma, M. R., Booth, T. M., Takemoto, C., Fucini, P. and Yokoyama, S. 2007. Structural aspects of RbfA action during small ribosomal subunit assembly. Mol Cell 28, 434-445.   DOI   ScienceOn
5 Desai, P. M. and Rife, J. P. 2006. The adenosine dimethyltransferase KsgA recognizes a specific conformational state of the 30S ribosomal subunit. Arch Biochem Biophys 449, 57-63.   DOI   ScienceOn
6 Diges, C. M. and Uhlenbeck, O. C. 2001. Escherichia coli DbpA is an RNA helicase that requires hairpin 92 of 23S rRNA. EMBO J 20, 5503-5512.   DOI   ScienceOn
7 El Hage, A., Sbai, M. and Alix, J. 2001. The chaperonin GroEL and other heat-shock proteins, besides DnaK, participate in ribosome biogenesis in Escherichia coli. Mol Gen Genet 264, 796-808.   DOI
8 Elles, L. M. and Uhlenbeck, O. C. 2008. Mutation of the arginine finger in the active site of Escherichia coli DbpA abolishes ATPase and helicase activity and confers a dominant slow growth phenotype. Nucleic Acids Res 36, 41-50.   DOI   ScienceOn
9 Engels, S., Ludwig, C., Schweitzer, J., Mack, C., Bott, M. and Schaffer, S. 2005. The transcriptional activator ClgR controls transcription of genes involved in proteolysis and DNA repair in Corynebacterium glutamicum. Mol Microbiol 57, 576-591.   DOI   ScienceOn
10 Feng, B., Mandava, C. S., Guo, Q., Wang, J., Cao, W., Li, N., Zhang, Y., Zhang, Y., Wang, Z. and Wu, J. 2014. Structural and functional insights into the mode of action of a universally conserved Obg GTPase. PLoS Biol 12, e1001866.   DOI   ScienceOn
11 Guo, Q., Goto, S., Chen, Y., Feng, B., Xu, Y., Muto, A., Himeno, H., Deng, H., Lei, J. and Gao, N. 2013. Dissecting the in vivo assembly of the 30S ribosomal subunit reveals the role of RimM and general features of the assembly process. Nucleic Acids Res 41, 2609-2620.   DOI
12 Fischer, J. J., Coatham, M. L., Eagle Bear, S., Brandon, H. E., De Laurentiis, E. I., Shields, M. J. and Wieden, H. 2012. The ribosome modulates the structural dynamics of the conserved GTPase HflX and triggers tight nucleotide binding. Biochimie 94, 1647-1659.   DOI   ScienceOn
13 Goto, S., Kato, S., Kimura, T., Muto, A. and Himeno, H. 2011. RsgA releases RbfA from 30S ribosome during a late stage of ribosome biosynthesis. EMBO J 30, 104-114.   DOI   ScienceOn
14 Green, R. and Noller, H. F. 1999. Reconstitution of functional 50S ribosomes from in vitro transcripts of Bacillus stearothermophilus 23S rRNA. Biochemistry 38, 1772-1779.   DOI   ScienceOn
15 Guo, Q., Yuan, Y., Xu, Y., Feng, B., Liu, L., Chen, K., Sun, M., Yang, Z., Lei, J. and Gao, N. 2011. Structural basis for the function of a small GTPase RsgA on the 30S ribosomal subunit maturation revealed by cryoelectron microscopy. Proc Natl Acad Sci USA 108, 13100-13105.   DOI   ScienceOn
16 Hager, J., Staker, B. L., Bugl, H. and Jakob, U. 2002. Active site in RrmJ, a heat shock-induced methyltransferase. J Biol Chem 277, 41978-41986.   DOI   ScienceOn
17 Guthrie, C., Nashimoto, H. and Nomura, M. 1969. Structure and function of E. coli ribosomes. 8. Cold-sensitive mutants defective in ribosome assembly. Proc Natl Acad Sci USA 63, 384-391.   DOI
18 Guthrie, C., Nashimoto, H. and Nomura, M. 1969. Studies on the assembly of ribosomes in vivo. Cold Spring Harb Symp Quant Biol 34, 69-75.   DOI
19 Hage, A. E. and Alix, J. 2004. Authentic precursors to ribosomal subunits accumulate in Escherichia coli in the absence of functional DnaK chaperone. Mol Microbiol 51, 189-201.
20 Himeno, H., Hanawa-Suetsugu, K., Kimura, T., Takagi, K., Sugiyama, W., Shirata, S., Mikami, T., Odagiri, F., Osanai, Y., Watanabe, D., Goto, S., Kalachnyuk, L., Ushida, C. and Muto, A. 2004. A novel GTPase activated by the small subunit of ribosome. Nucleic Acids Res 32, 5303-5309.   DOI   ScienceOn
21 Hase, Y., Yokoyama, S., Muto, A. and Himeno, H. 2009. Removal of a ribosome small subunit-dependent GTPase confers salt resistance on Escherichia coli cells. RNA 15, 1766-1774.   DOI   ScienceOn
22 Hayes, F. and Hayes, D. 1971. Biosynthesis of ribosomes in E. coli: I.-Properties of ribosomal precursor particles and their RNA components. Biochimie 53, 369-382.   DOI   ScienceOn
23 Helser, T. L., Davies, J. E. and Dahlberg, J. E. 1972. Mechanism of kasugamycin resistance in Escherichia coli. Nature 235, 6-9.
24 Holmes, K. L. and Culver, G. M. 2005. Analysis of conformational changes in 16S rRNA during the course of 30S subunit assembly. J Mol Biol 354, 340-357.   DOI   ScienceOn
25 Hwang, J. and Inouye, M. 2001. An essential GTPase, der, containing double GTP-binding domains from Escherichia coli and Thermotoga maritima. J Biol Chem 276, 31415-31421.   DOI   ScienceOn
26 Houry, W. A., Frishman, D., Eckerskorn, C., Lottspeich, F. and Hartl, F. U. 1999. Identification of in vivo substrates of the chaperonin GroEL. Nature 402, 147-154.   DOI   ScienceOn
27 Hwang, J. and Inouye, M. 2010. A Bacterial GAP-Like Protein, YihI, Regulating the GTPase of Der, an Essential GTP-Binding Protein in Escherichia coli. J Mol Biol 399, 759-772.   DOI   ScienceOn
28 Hwang, J. and Inouye, M. 2006. The tandem GTPase, Der, is essential for the biogenesis of 50S ribosomal subunits in Escherichia coli. Mol Microbiol 61, 1660-1672.   DOI   ScienceOn
29 Inoue, K., Alsina, J., Chen, J. and Inouye, M. 2003. Suppression of defective ribosome assembly in a rbfA deletion mutant by overexpression of Era, an essential GTPase in Escherichia coli. Mol Microbiol 48, 1005-1016.   DOI   ScienceOn
30 Jain, C. 2008. The E. coli RhlE RNA helicase regulates the function of related RNA helicases during ribosome assembly. RNA 14, 381-389.
31 Inoue, K., Chen, J., Kato, I. and Inouye, M. 2002. Specific growth inhibition by acetate of an Escherichia coli strain expressing Era-dE, a dominant negative Era mutant. J Mol Microbiol Biotechnol 4, 379-388.
32 Iost, I. and Dreyfus, M. 2006. DEAD-box RNA helicases in Escherichia coli. Nucleic Acids Res 34, 4189-4197.   DOI   ScienceOn
33 Jain, N., Dhimole, N., Khan, A. R., De, D., Tomar, S. K., Sajish, M., Dutta, D., Parrack, P. and Prakash, B. 2009. E. coli HflX interacts with 50S ribosomal subunits in presence of nucleotides. Biochem Biophys Res Commun 379, 201-205.   DOI   ScienceOn
34 Karginov, F. V. and Uhlenbeck, O. C. 2004. Interaction of Escherichia coli DbpA with 23S rRNA in different functional states of the enzyme. Nucleic Acids Res 32, 3028-3032.   DOI   ScienceOn
35 Jones, P. G. and Inouye, M. 1996. RbfA, a 30S ribosomal binding factor, is a cold‐shock protein whose absence triggers the cold‐shock response. Mol Microbiol 21, 1207-1218.   DOI   ScienceOn
36 Jones, P. G., Mitta, M., Kim, Y., Jiang, W. and Inouye, M. 1996. Cold shock induces a major ribosomal-associated protein that unwinds double-stranded RNA in Escherichia coli. Proc Natl Acad Sci USA 93, 76-80.   DOI   ScienceOn
37 Karginov, F. V., Caruthers, J. M., Hu, Y., McKay, D. B. and Uhlenbeck, O. C. 2005. YxiN is a modular protein combining a DEx(D/H) core and a specific RNA-binding domain. J Biol Chem 280, 35499-35505.   DOI   ScienceOn
38 Khaitovich, P., Tenson, T., Kloss, P. and Mankin, A. S. 1999. Reconstitution of functionally active Thermus aquaticus large ribosomal subunits with in vitro-transcribed rRNA. Biochemistry 38, 1780-1788.   DOI   ScienceOn
39 Kossen, K., Karginov, F. V. and Uhlenbeck, O. C. 2002. The carboxy-terminal domain of the DExDH protein YxiN is sufficient to confer specificity for 23S rRNA. J Mol Biol 324, 625-636.   DOI   ScienceOn
40 Kimura, T., Takagi, K., Hirata, Y., Hase, Y., Muto, A. and Himeno, H. 2008. Ribosome-small-subunit-dependent GTPase interacts with tRNA-binding sites on the ribosome. J Mol Biol 381, 467-477.   DOI   ScienceOn
41 Kirthi, N., Roy-Chaudhuri, B., Kelley, T. and Culver, G. M. 2006. A novel single amino acid change in small subunit ribosomal protein S5 has profound effects on translational fidelity. RNA 12, 2080-2091.   DOI   ScienceOn
42 Lindahl, L. 1975. Intermediates and time kinetics of the in vivo assembly of Escherichia coli ribosomes. J Mol Biol 92, 15-37.   DOI
43 Koller-Eichhorn, R., Marquardt, T., Gail, R., Wittinghofer, A., Kostrewa, D., Kutay, U. and Kambach, C. 2007. Human OLA1 defines an ATPase subfamily in the Obg family of GTP-binding proteins. J Biol Chem 282, 19928-19937.   DOI   ScienceOn
44 Lerner, C. G., Gulati, P. S. and Inouye, M. 1995. Cold‐sensitive conditional mutations in Era, an essential Escherichia coli GTPase, isolated by localized random polymerase chain reaction mutagenesis. FEMS Microbiol Lett 126, 291-298.   DOI
45 Lewandowski, L. J. and Brownstein, B. L. 1966. An altered pattern of ribosome synthesis in a mutant of E. coli. Biochem Biophys Res Commun 25, 554-561.   DOI
46 Lindahl, L. 1973. Two new ribosomal precursor particles in E. coli. Nature 243, 170-172.
47 McCutcheon, J. P., Agrawal, R. K., Philips, S. M., Grassucci, R. A., Gerchman, S. E., Clemons, W. M.,Jr, Ramakrishnan, V. and Frank, J. 1999. Location of translational initiation factor IF3 on the small ribosomal subunit. Proc Natl Acad Sci USA 96, 4301-4306.   DOI
48 Lovgren, J. M., Bylund, G. O., Srivastava, M. K., Lundberg, L. A., Persson, O. P., Wingsle, G. and Wikstrom, P. M. 2004. The PRC-barrel domain of the ribosome maturation protein RimM mediates binding to ribosomal protein S19 in the 30S ribosomal subunits. RNA 10, 1798-1812.   DOI   ScienceOn
49 MacDonald, R. E., Turnock, G. and Forchhammer, J. 1967. The synthesis and function of ribosomes in a new mutant of Escherichia coli. Proc Natl Acad Sci USA 57, 141-147.   DOI   ScienceOn
50 Maki, J. A., Schnobrich, D. J. and Culver, G. M. 2002. The DnaK chaperone system facilitates 30S ribosomal subunit assembly. Mol Cell 10, 129-138.   DOI   ScienceOn
51 Meier, T. I., Peery, R. B., McAllister, K. A. and Zhao, G. 2000. Era GTPase of Escherichia coli: binding to 16S rRNA and modulation of GTPase activity by RNA and carbohydrates. Microbiology 146 (Pt 5), 1071-1083.   DOI
52 Moll, I., Grill, S., Gründling, A. and Blasi, U. 2002. Effects of ribosomal proteins S1, S2 and the DeaD/CsdA DEADbox helicase on translation of leaderless and canonical mRNAs in Escherichia coli. Mol Microbiol 44, 1387-1396.   DOI   ScienceOn
53 Morimoto, T., Loh, P. C., Hirai, T., Asai, K., Kobayashi, K., Moriya, S. and Ogasawara, N. 2002. Six GTP-binding proteins of the Era/Obg family are essential for cell growth in Bacillus subtilis. Microbiology 148, 3539-3552.   DOI
54 Nicol, S. M. and Fuller-Pace, F. V. 1995. The "DEAD box" protein DbpA interacts specifically with the peptidyltransferase center in 23S rRNA. Proc Natl Acad Sci USA 92, 11681-11685.   DOI   ScienceOn
55 Niereaus, K. H., Bordasch, K. and Homann, H. E. 1973. Ribosomal proteins. J Mol Biol 74, 587-597.   DOI
56 Nishimura, M., Yoshida, T., Shirouzu, M., Terada, T., Kuramitsu, S., Yokoyama, S., Ohkubo, T. and Kobayashi, Y. 2004. Solution Structure of Ribosomal Protein L16 from Thermus thermophilus HB8. J Mol Biol 344, 1369-1383.   DOI   ScienceOn
57 Nierhaus, K. H. 1991. The assembly of prokaryotic ribosomes. Biochimie 73, 739-755.   DOI   ScienceOn
58 Nierhaus, K. H. and Dohme, F. 1974. Total reconstitution of functionally active 50S ribosomal subunits from Escherichia coli. Proc Natl Acad Sci USA 71, 4713-4717.   DOI   ScienceOn
59 Nissen, P., Hansen, J., Ban, N., Moore, P. B. and Steitz, T. A. 2000. The structural basis of ribosome activity in peptide bond synthesis. Science 289, 920-930.   DOI   ScienceOn
60 Nishi, K., Morel-Deville, F., Hershey, J. W., Leighton, T. and Schnier, J. 1988. An eIF-4A-like protein is a suppressor of an Escherichia coli mutant defective in 50S ribosomal subunit assembly. Nature 336, 496-498.   DOI   ScienceOn
61 O'Farrell, H. C., Pulicherla, N., Desai, P. M. and Rife, J. P. 2006. Recognition of a complex substrate by the KsgA/Dim1 family of enzymes has been conserved throughout evolution. RNA 12, 725-733.   DOI   ScienceOn
62 Peil, L., Virumäe, K. and Remme, J. 2008. Ribosome assembly in Escherichia coli strains lacking the RNA helicase DeaD/CsdA or DbpA. FEBS J 275, 3772-3782.   DOI   ScienceOn
63 Pillutla, R. C., Sharer, J. D., Gulati, P. S., Wu, E., Yamashita, Y., Lerner, C. G., Inouye, M. and March, P. E. 1995. Crossspecies complementation of the indispensable Escherichia coli era gene highlights amino acid regions essential for activity. J Bacteriol 177, 2194-2196.   DOI
64 Sato, A., Kobayashi, G., Hayashi, H., Yoshida, H., Wada, A., Maeda, M., Hiraga, S., Takeyasu, K. and Wada, C. 2005. The GTP binding protein Obg homolog ObgE is involved in ribosome maturation. Genes Cells 10, 393-408.   DOI   ScienceOn
65 Polach, K. J. and Uhlenbeck, O. C. 2002. Cooperative binding of ATP and RNA substrates to the DEAD/H protein DbpA. Biochemistry 41, 3693-3702.   DOI   ScienceOn
66 Prud'homme-Genereux, A., Beran, R. K., Iost, I., Ramey, C. S., Mackie, G. A. and Simons, R. W. 2004. Physical and functional interactions among RNase E, polynucleotide phosphorylase and the cold‐shock protein, CsdA: evidence for a 'cold shock degradosome'. Mol Microbiol 54, 1409-1421.   DOI   ScienceOn
67 Sharma, M. R., Barat, C., Wilson, D. N., Booth, T. M., Kawazoe, M., Hori-Takemoto, C., Shirouzu, M., Yokoyama, S., Fucini, P. and Agrawal, R. K. 2005. Interaction of Era with the 30S ribosomal subunit: implications for 30S subunit assembly. Mol Cell 18, 319-329.   DOI   ScienceOn
68 Roy Chaudhuri, B., Kirthi, N., Kelley, T. and Culver, G. M. 2008. Suppression of a cold‐sensitive mutation in ribosomal protein S5 reveals a role for RimJ in ribosome biogenesis. Mol Microbiol 68, 1547-1559.   DOI   ScienceOn
69 Sayed, A., Matsuyama, S. and Inouye, M. 1999. Era, an Essential Escherichia coli Small G-Protein, Binds to the 30S Ribosomal Subunit. Biochem Biophys Res Commun 264, 51-54.   DOI   ScienceOn
70 Selmer, M., Dunham, C. M., Murphy, F. V. 4th., Weixlbaumer, A., Petry, S., Kelley, A. C., Weir, J. R. and Ramakrishnan, V. 2006. Structure of the 70S ribosome complexed with mRNA and tRNA. Science 313, 1935-1942.   DOI   ScienceOn
71 Spillmann, S., Dohme, F. and Nierhaus, K. H. 1977. Assembly in Vitro of the 50 S subunit from Escherichia coli ribosomes: Proteins essential for the first heat-dependent conformational change. J Mol Biol 115, 513-523.   DOI
72 Sharpe Elles, L. M., Sykes, M. T., Williamson, J. R. and Uhlenbeck, O. C. 2009. A dominant negative mutant of the E. coli RNA helicase DbpA blocks assembly of the 50S ribosomal subunit. Nucleic Acids Res 37, 6503-6514.   DOI   ScienceOn
73 Shields, M. J., Fischer, J. J. and Wieden, H. 2009. Toward understanding the function of the universally conserved GTPase HflX from Escherichia coli: a kinetic approach. Biochemistry 48, 10793-10802.   DOI   ScienceOn
74 Thieringer, H. A., Jones, P. G. and Inouye, M. 1998. Cold shock and adaptation. Bioessays 20, 49-57.   DOI   ScienceOn
75 Sohlberg, B., Lundberg, U., Hartl, F. U. and von Gabain, A. 1993. Functional interaction of heat shock protein GroEL with an RNase E-like activity in Escherichia coli. Proc Natl Acad Sci USA 90, 277-281.   DOI
76 Suzuki, S., Tatsuguchi, A., Matsumoto, E., Kawazoe, M., Kaminishi, T., Shirouzu, M., Muto, Y., Takemoto, C. and Yokoyama, S. 2007. Structural characterization of the ribosome maturation protein, RimM. J Bacteriol 189, 6397-6406.   DOI   ScienceOn
77 Tan, J., Jakob, U. and Bardwell, J. C. 2002. Overexpression of two different GTPases rescues a null mutation in a heat-induced rRNA methyltransferase. J Bacteriol 184, 2692-2698.   DOI   ScienceOn
78 Tomar, S. K., Dhimole, N., Chatterjee, M. and Prakash, B. 2009. Distinct GDP/GTP bound states of the tandem G-domains of EngA regulate ribosome binding. Nucleic Acids Res 37, 2359-2370.   DOI   ScienceOn
79 Tu, C., Zhou, X., Tropea, J. E., Austin, B. P., Waugh, D. S., Court, D. L. and Ji, X. 2009. Structure of ERA in complex with the 3' end of 16S rRNA: implications for ribosome biogenesis. Proc Natl Acad Sci USA 106, 14843-14848.   DOI   ScienceOn
80 Traub, P. and Nomura, M. 1968. Structure and function of E. coli ribosomes. V. Reconstitution of functionally active 30S ribosomal particles from RNA and proteins. Proc Natl Acad Sci USA 59, 777-784.   DOI
81 Trubetskoy, D., Proux, F., Allemand, F., Dreyfus, M. and Iost, I. 2009. SrmB, a DEAD-box helicase involved in Escherichia coli ribosome assembly, is specifically targeted to 23S rRNA in vivo. Nucleic Acids Res 37, 6540-6549.   DOI   ScienceOn
82 Wittinghofer, A. and Pal, E. F. 1991. The structure of Ras protein: a model for a universal molecular switch. Trends Biochem Sci 16, 382-387.   DOI   ScienceOn
83 Tsu, C. A. and Uhlenbeck, O. C. 1998. Kinetic analysis of the RNA-dependent adenosinetriphosphatase activity of DbpA, an Escherichia coli DEAD protein specific for 23S ribosomal RNA. Biochemistry 37, 16989-16996.   DOI   ScienceOn
84 Williamson, J. R. 2005. Assembly of the 30S ribosomal subunit. Q Rev Biophys 38, 397-403.   DOI   ScienceOn
85 Williamson, J. R. 2003. After the ribosome structures: how are the subunits assembled? RNA 9, 165-167.   DOI   ScienceOn
86 Xia, B., Ke, H., Shinde, U. and Inouye, M. 2003. The role of RbfA in 16S rRNA processing and cell growth at low temperature in Escherichia coli. J Mol Biol 332, 575-584.   DOI   ScienceOn
87 Xu, Z., O'Farrell, H. C., Rife, J. P. and Culver, G. M. 2008. A conserved rRNA methyltransferase regulates ribosome biogenesis. Nat Struct Mol Biol 15, 534-536.   DOI   ScienceOn
88 Yoshikawa, A., Isono, S., Sheback, A. and Isono, K. 1987. Cloning and nucleotide sequencing of the genes rimI and rimJ which encode enzymes acetylating ribosomal proteins S18 and S5 of Escherichia coli K12. Mol Gen Genet 209, 481-488.   DOI
89 Alix, J. H. and Guerin, M. F. 1993. Mutant DnaK chaperones cause ribosome assembly defects in Escherichia coli. Proc Natl Acad Sci USA 90, 9725-9729.   DOI
90 Britton, R. A. 2009. Role of GTPases in bacterial ribosome assembly. Annu Rev Microbiol 63, 155-176.   DOI   ScienceOn
91 Bharat, A., Jiang, M., Sullivan, S. M., Maddock, J. R. and Brown, E. D. 2006. Cooperative and critical roles for both G domains in the GTPase activity and cellular function of ribosome-associated Escherichia coli EngA. J Bacteriol 188, 7992-7996.   DOI   ScienceOn
92 Blombach, F., Launay, H., Zorraquino, V., Swarts, D. C., Cabrita, L. D., Benelli, D., Christodoulou, J., Londei, P. and van der Oost, J. 2011. An HflX-type GTPase from Sulfolobus solfataricus binds to the 50S ribosomal subunit in all nucleotide-bound states. J Bacteriol 193, 2861-2867.   DOI   ScienceOn
93 Boddeker, N., Stade, K. and Franceschi, F. 1997. Characterization of DbpA, an Escherichia coli DEAD box protein with ATP independent RNA unwinding activity. Nucleic Acids Res 25, 537-545.   DOI   ScienceOn
94 Bügl, H., Fauman, E. B., Staker, B. L., Zheng, F., Kushner, S. R., Saper, M. A., Bardwell, J. C. and Jakob, U. 2000. RNA methylation under heat shock control. Mol Cell 6, 349-360.   DOI   ScienceOn
95 Boehringer, D., O'Farrell, H. C., Rife, J. P. and Ban, N. 2012. Structural insights into methyltransferase KsgA function in 30S ribosomal subunit biogenesis. J Biol Chem 287, 10453-10459.   DOI
96 Bourne, H. R., Sanders, D. A. and McCormick, F. 1990. The GTPase superfamily: a conserved switch for diverse cell functions. Nature 348, 125-132.   DOI   ScienceOn
97 Britton, R. A., Powell, B. S., Dasgupta, S., Sun, Q., Margolin, W., Lupski, J. R. and Court, D. L. 1998. Cell cycle arrest in Era GTPase mutants: a potential growth rate‐regulated checkpoint in Escherichia coli. Mol Microbiol 27, 739-750.   DOI   ScienceOn
98 Bukau, B. and Horwich, A. L. 1998. The Hsp70 and Hsp60 chaperone machines. Cell 92, 351-366.   DOI   ScienceOn
99 Bunner, A. E., Nord, S., Wikstrom, P. M. and Williamson, J. R. 2010. The Effect of ribosome assembly cofactors on in vitro 30S subunit reconstitution. J Mol Biol 398, 1-7.9   DOI   ScienceOn
100 Bylund, G. O., Persson, B. C., Lundberg, L. A. and Wikstrom, P. M. 1997. A novel ribosome-associated protein is important for efficient translation in Escherichia coli. J Bacteriol 179, 4567-4574.   DOI
101 Bylund, G. O., Wipemo, L. C., Lundberg, L. A. and Wikstrom, P. M. 1998. RimM and RbfA are essential for efficient processing of 16S rRNA in Escherichia coli. J Bacteriol 180, 73-82.
102 Carter, A. P., Clemons, W. M. Jr, Brodersen, D. E., Morgan- Warren, R. J., Hartsch, T., Wimberly, B. T. and Ramakrishnan, V. 2001. Crystal structure of an initiation factor bound to the 30S ribosomal subunit. Science 291, 498-501.   DOI   ScienceOn
103 Bystrom, A. S., Hjalmarsson, K. J., Wikstrom, P. M. and Bjork, G. R. 1983. The nucleotide sequence of an Escherichia coli operon containing genes for the tRNA(m1G)methyltransferase, the ribosomal proteins S16 and L19 and a 21-K polypeptide. EMBO J 2, 899-905.
104 Charollais, J., Dreyfus, M. and Iost, I. 2004. CsdA, a cold-shock RNA helicase from Escherichia coli, is involved in the biogenesis of 50S ribosomal subunit. Nucleic Acids Res 32, 2751-2759.   DOI   ScienceOn
105 Caldas, T., Binet, E., Bouloc, P., Costa, A., Desgres, J. and Richarme, G. 2000. The FtsJ/RrmJ heat shock protein of Escherichia coli is a 23 S ribosomal RNA methyltransferase. J Biol Chem 275, 16414-16419.   DOI   ScienceOn
106 Charollais, J., Pflieger, D., Vinh, J., Dreyfus, M. and Iost, I. 2003. The DEAD‐box RNA helicase SrmB is involved in the assembly of 50S ribosomal subunits in Escherichia coli. Mol Microbiol 48, 1253-1265.   DOI   ScienceOn
107 Chen, X., Court, D. L. and Ji, X. 1999. Crystal structure of ERA: a GTPase-dependent cell cycle regulator containing an RNA binding motif. Proc Natl Acad Sci USA 96, 8396-8401.   DOI
108 Connolly, K. and Culver, G. 2013. Overexpression of RbfA in the absence of the KsgA checkpoint results in impaired translation initiation. Mol Microbiol 87, 968-981.   DOI   ScienceOn
109 Connolly, K., Rife, J. P. and Culver, G. 2008. Mechanistic insight into the ribosome biogenesis functions of the ancient protein KsgA. Mol Microbiol 70, 1062-1075.   DOI   ScienceOn
110 Krzyzosiak, W., Denman, R., Nurse, K., Hellmann, W., Boublik, M., Gehrke, C., Agris, P. and Ofengand, J. 1987. In vitro synthesis of 16S ribosomal RNA containing single base changes and assembly into a functional 30S ribosome. Biochemistry 26, 2353-2364.   DOI   ScienceOn
111 Nord, S., Bylund, G. O., Lövgren, J. M. and Wikstrom, P. M. 2009. The RimP protein is important for maturation of the 30S ribosomal subunit. J Mol Biol 386, 742-753.   DOI   ScienceOn
112 Wang, S., Hu, Y., Overgaard, M. T., Karginov, F. V., Uhlenbeck, O. C. and McKay, D. B. 2006. The domain of the Bacillus subtilis DEAD-box helicase YxiN that is responsible for specific binding of 23S rRNA has an RNA recognition motif fold. RNA 12, 959-967.   DOI   ScienceOn
113 Schuwirth, B. S., Borovinskaya, M. A., Hau, C. W., Zhang, W., Vila-Sanjurjo, A., Holton, J. M. and Cate, J. H. 2005. Structures of the bacterial ribosome at 3.5 A resolution. Science 310, 827-834.   DOI   ScienceOn
114 Thammana, P. 1974. Methylation of 16S RNA during ribosome assembly in vitro. Nature 251, 682-686.   DOI   ScienceOn