Browse > Article
http://dx.doi.org/10.5352/JLS.2016.26.10.1113

Isolation of Mannanase-producing Bacteria, Bacillus subtilis WL-6 and WL-11, and Cloning and Characterization of Mannanase  

Yoon, Ki-Hong (Food Science & Biotechnology Major, Woosong University)
Publication Information
Journal of Life Science / v.26, no.10, 2016 , pp. 1113-1120 More about this Journal
Abstract
Two bacterial strains producing extracellular man nanase were isolated from doenjang, a traditionally fermented soybean paste in Korea. The isolates, WL-6 and WL-11, were identified as Bacillus subtiis on the basis of their 16S rRNA gene sequences, morphological, and biochemical properties. Two genes encoding the mannanase of both B. subtilis WL-6 and B. subtilis WL-11 were each cloned into Escherichia coli, and their nucleotide sequences were determined. Both mannanase genes consisted of 1,086 nucleotides, encoding polypeptides of 362 amino acid residues. The deduced amino acid sequences of the two WL-6 and WL-11 mannanases, designated Man6 and Man11, respectively, differed from each other by eight amino acid residues, and they were highly homologous to those of mannanases belonging to the glycosyl hydrolase family 26. The 26 amino acid stretch in the N-terminus of Man6 and Man11 was a predicted signal peptide. Both Man6 and Man11 were localized at the level of 94–95% in an intracellular fraction of recombinant E. coli cells. The enzymes hydrolyzed both locust bean gum and mannooligosaccharides, including mannotriose, mannotetraose, mannopentaose, and mannohexaose, forming mannobiose and mannotriose as predominant products. The optimal reaction conditions were 55°C and pH 6.0 for Man6, and 60°C and pH 5.5 for Man11. Man11 was more stable than Man6 at high temperatures.
Keywords
Activity; Bacillus subtilis; cloning; comparison; mannanase;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 Li, R. K., Chen, P., Ng, T. B., Yang, J., Lin, J., Yan, F. and Ye, X. Y. 2015. Highly efficient expression and characterization of a β-mannanase from Bacillus subtilis in Pichia pastoris. Biotechnol. Appl. Biochem. 62, 64-70.   DOI
2 Xu, M., Zhang, R., Liu, X., Shi, J., Xu, Z. and Rao, Z. 2013. Improving the acidic stability of a β-mannanase from Bacillus subtilis by site-directed mutagenesis. Proc. Biochem. 48, 1166-1173   DOI
3 Ma, Y., Xue, Y., Dou, Y., Xu, Z., Tao, W. and Zhou, P. 2004. Characterization and gene cloning of a novel β-mannanase from alkaliphilic Bacillus sp. N16-5. Extremophiles 8, 447-454.   DOI
4 Morrill, J., Kulcinskaja, E., Sulewska, A. M., Lahtinen, S., Stalbrand, H., Svensson, B. and Hachem, A. M. 2015. The GH5 1,4-β-mannanase from Bifidobacterium animalis subsp. lactis Bl-04 possesses a low-affinity mannan-binding module and highlights the diversity of mannanolytic enzymes. BMC Biochem. 16, 26.   DOI
5 Rosengren, A., Reddy, S. K., Sjoberg, J. S., Aurelius, O., Logan, D. T., Kolenova, K. and Stalbrand, H. 2014. An Aspergillus nidulans β-mannanase with high transglycosylation capacity revealed through comparative studies within glycosidase family 5. Appl. Microbiol. Biotechnol. 98, 10091-10104.   DOI
6 Sak-Ubol, S., Namvijitr, P., Pechsrichuang, P., Haltrich, D., Nguyen, T. H., Mathiesen, G., Eijsink, V. G. and Yamabhai, M. 2016. Secretory production of a β-mannanase and a chitosanase using a Lactobacillus plantarum expression system. Microb. Cell Fact. 15, 81.   DOI
7 Shimizu, M., Kaneko, Y., Ishihara, S., Mochizuki, M., Sakai, K., Yamada, M., Murata, S., Itoh, E., Yamamoto, T., Sugimura, Y., Hirano, T., Takaya, N., Kobayashi, T. and Kato, M. 2015. Novel β-1,4-mannanase belonging to a new glycoside hydrolase family in Aspergillus nidulans. J. Biol. Chem. 290, 27914-27.   DOI
8 Yoon, K. H. 2010. Cloning and characterization of mannanase gene from Bacillus subtilis WL-8. Kor. J. Microbiol. 46, 207-212.
9 Yoon, K. H., Chung, S. and Lim, B. L. 2008. Characterization of the Bacillus subtilis WL-3 mannanase from a recombinant Escherichia coli. J. Microbiol. 46, 344-349.   DOI
10 Zang, H., Xie, S., Wu, H., Wang, W., Shao, X., Wu, L., Rajer, F. U. and Gao, X. 2015. A novel thermostable GH5_7 β- mannanase from Bacillus pumilus GBSW19 and its application in manno-oligosaccharides (MOS) production. Enzyme Microb. Technol. 78, 1-9.   DOI
11 Zhang, C., Chen, J. D. and Yang, F. Q. 2014. Konjac glucomannan, a promising polysaccharide for OCDDS. Carbohydr. Polym. 104, 175-181.   DOI
12 Zhou, H., Yang, Y., Nie, X., Yang, W. and Wu, Y. 2013. Comparison of expression systems for the extracellular production of mannanase Man23 originated from Bacillus subtilis B23. Microb. Cell Fact. 12, 78.   DOI
13 Shukor, H., Abdeshahian, P., Al-Shorgani, N. K., Hamid, A. A., Rahman, N. A. and Kalil, M. S. 2016. Saccharification of polysaccharide content of palm kernel cake using enzymatic catalysis for production of biobutanol in acetone-butanol-ethanol fermentation. Bioresour. Technol. 202, 206-213.   DOI
14 Srivastava, P. K. and Kapoor, M. 2014. Cost-effective endo-mannanase from Bacillus sp. CFR1601 and its application in generation of oligosaccharides from guar gum and as detergent additive. Prep. Biochem. Biotechnol. 44, 392-417.   DOI
15 Tang, J., Guo, S., Wang, W., Wei, W. and Wei, D. 2015. Alkaline-adapted β-mannanase of Bacillus pumilus: gene heterologous expression and enzyme characterization. Wei Sheng Wu Xue Bao 55, 1445-1457.
16 von Freiesleben, P., Spodsberg, N., Blicher, T. H., Anderson, L., Jorgensen, H., Stalbrand, H., Meyer, A. S. and Krogh, K. B. 2016. An Aspergillus nidulans GH26 endo-β-mannanase with a novel degradation pattern on highly substituted galactomannans. Enzyme Microb. Technol. 83, 68-77.   DOI
17 Vu, T. T., Quyen, D. T., Dao, T. T. and Nguyen Sle, T. 2012. Cloning, high-level expression, purification, and properties of a novel endo-β-1,4-mannanase from Bacillus subtilis G1 in Pichia pastoris. J. Microbiol. Biotechnol. 22, 331-338.   DOI
18 Xia, W., Lu, H., Xia, M., Cui, Y., Bai, Y., Qian, L., Shi, P., Luo, H. and Yao, B. 2016. A novel glycoside hydrolase family 113 endo-β-1,4-mannanase from Alicyclobacillus sp. strain A4 and insight into the substrate recognition and catalytic mechanism of this Family. Appl. Environ. Microbiol. 82, 2718-2727.   DOI
19 Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254.   DOI
20 Dhawan, S. and Kaur, J. 2007. Microbial mannanases: an overview of production and applications. Crit. Res. Biotechnol. 27, 197-216.   DOI
21 Dong, Y. H., Li, J. F., Hu, D., Yin, X., Wang, C. J., Tang, S. H. and Wu, M. C. 2016. Replacing a piece of loop-structure in the substrate-binding groove of Aspergillus usamii β-mannanase, AuMan5A, to improve its enzymatic properties by rational design. Appl. Microbiol. Biotechnol. 100, 3989-3998.   DOI
22 Ghosh, A., Luis, A. S., Bras, J. L., Fontes, C. M. and Goyal, A. 2013. Thermostable recombinant β-(1→4)-mannanase from C. thermocellum: biochemical characterization and manno-oligosaccharides production. J. Agric. Food Chem. 61, 12333-12344.   DOI
23 Jiang, Z., Wei, Y., Li, D., Li, L., Chai, P. and Kusakabe, I. 2006. High-level production, purification and characterization of a thermostable β-mannanase from the newly isolated Bacillus subtilis WY34. Carbohydr. Polym. 66, 68-96.
24 Kweun, M. A., Lee, M. S., Choi, J. H., Cho, K. H. and Yoon, K. H. 2004. Cloning of a Bacillus subtilis WL-7 mannanase gene and characterization of the gene product. J. Microbiol. Biotechnol. 14, 1295-1302.
25 Kweun, M. A. and Yoon, K. H. 2004. Hydrolysis of Galactomannan and Manno-oligosaccharides by A Bacillus subtiis Mannanase. Kor. J. Microbiol. Biotechnol. 32, 347-351.