• Title/Summary/Keyword: bacterial blight pathogen

Search Result 90, Processing Time 0.034 seconds

Disease Severity of Bacterial Blight in Mixed Plantings of Rice Near-Isogenic Lines (벼흰빛잎마름병 저항성 근동질유전자계통 혼합재배에서 이병정도)

  • Mun Sik Shin;Ki Young Kim;Jae Kil Lee
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.48 no.3
    • /
    • pp.139-141
    • /
    • 2003
  • Disease severity, percent ripened grains, and yield were investigated in the seven mixtures by using near-isogenic lines having different resistant gene(s) to bacterial blight(BB) of rice. The seven mixtures including the four pure stands were inoculated with a 1:1:1 mixture of races $K_1$, $K_2$, and $K_3$ of BB. Among the seven mixtures-ML01, ML02, ML03, MLl2, MLl3, ML23 and ML0123-, disease severiety, percent ripened grains, and yield of ML01 and ML12, respectively did not show significant difference with those of mean values of their components. But degree of disease severity of the other mixtures, respectively -ML02, ML03, MLl3, ML23, and ML0123-was less than the mean of their components. Percent ripened grains and yield of them were higher than those of mean of their components. ML03, MLl3, ML23 and ML0123 comprised of the equal amount of two or four components having different resistant gene, these mixtures appeared to be a desirable combination for delaying spread of the pathogen, stabilizing of the race structure of the pathogen population, and extending durability of a cultivar with monogenic resistance.

Genetic Analysis on the Bacterial Blight Resistance Gene from a Wild Relative, Oryza minuta (야생벼 Oryza minuta에서 유래한 수원506호의 흰잎마름병 저항성유전자에 대한 고찰)

  • Jeung, Ji-Ung;Roh, Tae-Hwan;Kang, Kyung-Ho;Shin, Young-Seop;Kim, Yeon-Gyu
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.56 no.2
    • /
    • pp.124-133
    • /
    • 2011
  • Bacterial blight (BB), cuased by the vascular pathogen Xanthomonas oryzae pv. oryzae, is one of the major threats in rice fields worldwide. In Korea, two resistance genes against BB, Xa1 and Xa3 had been intensively used for developing high quality japonica rice cultivars. Those traditional resistance sources have being rapidly ified by the adopting of BB pathogen through mutations of the corresponding avr-genes, such as K3a exhibiting high compatibility to both Xa1 and Xa3. To expanding genetic resource against BB in Korea, the Suweon506, an introgression line between a Korean japonica cultivar, Hwaseong and a wild relative, Oryza minuta, was be subjected for genetic analysis owing to the BB resistance. Through association analyses between the pathotyping and genotyping results for each $F_2$ progenies, derived from a cross between Suweon506 and a Tongil type cultivar, Milyang23, a major resistant dominant gene is localized on the subterminal region of rice chromosome 4, where at least three BB resistancde genes, Xa1, Xa2, and Xa22, were reported previously.

Evaluation of Disease Resistance of Rice Cultivar Developed in North Korea (북한에서 육성된 벼 품종의 병 저항성 검정)

  • Chung, Hyunjung;Kang, In Jeong;Yang, Jung-Wook;Roh, Jae-Hwan;Shim, Hyeong-Kwon;Heu, Sunggi
    • Research in Plant Disease
    • /
    • v.25 no.3
    • /
    • pp.108-113
    • /
    • 2019
  • Almost 30% of arable lands of North Korea are covered with paddy rice. In rice cultivation of North Korea, rice blast disease is the most important fungal disease and bacterial leaf blight is the most important bacterial disease. Seven North Korean rice cultivars had been tested for the disease resistance against rice blast pathogen, Magnaporthe oryzae and bacterial leaf blight pathogen, Xanthomonas oryzae pv. oryzae. The responses of seven cultivars against 17 different M. oryzae races from South Korea had been quite different. Among seven cultivars, Giljoo1ho was very resistant to all 18 different M. oryzae isolates from South Korea, nevertheless KI or KJ. Pyungdo5ho was very susceptible, it showed susceptible responses to 8 out of 10 KI races and 7 out of 8 KJ races of M. oryzae isolated in South Korea. However, the response to bacterial leaf blight was different from the response to rice blast pathogen. Gijoo1ho, Wonsan69ho, Onpo1ho, and Pyungdo15ho were susceptible to KXO42 (K1) and KXO90 (K2), respectively. Pyungdo5ho was resistant to KXO85 (K1) and KXO19 (K3), and Pyungyang21ho was resistant to K1 races. Based on these results, Giljoo1ho can be a good resource for the breeding of resistant rice cultivar against M. oryzae isolates from South Korea.

A New Medium Maturity Glutinuous Rice Variety "Nunbora" with High Yield and Resistance to Bacterial Blight (벼 중생 내병 다수성 신품종 "눈보라")

  • Ha, Ki-Yong;Ko, Jae-Kwon;Kim, Ki-Yeong;Nam, Jeong-Kwon;Ko, Jong-Cheol;Kim, Bo-Kyeong;Baek, Man-Kee;Cheong, Jin-Il;Baek, So-Hyeon;Kim, Chung-Kon
    • Korean Journal of Breeding Science
    • /
    • v.40 no.3
    • /
    • pp.344-347
    • /
    • 2008
  • "Nunbora" is a new japonica rice cultivar developed from a cross between Iksan433 resistant to bacterial blight and Miyadamamochi, a waxy line. at Honam Agricultural Research Institute, NICS, RDA, in 2006. This cultivar is a short grain shape and about 118 days of growth duration from transplanting "Nunbora" to harvesting under Korean climatic conditions. The milled rice are snow white and glutinuous. This cultivar shows high resistant reactions to the bacterial blight pathogen race $K_1{\sim}K_3$ and blast respectively. The milled rice yield of "Nunbora" is about 5.34 MT/ha under the standard fertilizer level of the ordinary transplanting cultivation. "Nunbora" would be adaptable for in the middle plain, north middle-mountin plain and Honam plain, and Youngnam plain areas of Korea.

Dynamics of Bacterial Communities by Apple Tissue: Implications for Apple Health

  • Hwa-Jung Lee;Su-Hyeon Kim;Da-Ran Kim;Gyeongjun Cho;Youn-Sig Kwak
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.9
    • /
    • pp.1141-1148
    • /
    • 2023
  • Herein, we explored the potential of the apple's core microbiota for biological control of Erwinia amylovora, which causes fire blight disease, and analyzed the structure of the apple's bacterial community across different tissues and seasons. Network analysis results showed distinct differences in bacterial community composition between the endosphere and rhizosphere of healthy apples, and eight taxa were identified as negatively correlated with E. amylovora, indicating their potential key role in a new control strategy against the pathogen. This study highlights the critical role of the apple's bacterial community in disease control and provides a new direction for future research in apple production. In addition, the findings suggest that using the composition of the apple's core taxa as a biological control strategy could be an effective alternative to traditional chemical control methods, which have been proven futile and environmentally harmful.

Identification and Ecological Characteristics of Bacterial Blossom Blight Pathogen of Kiwifruit (참다래 꽃썩음병균의 동정 및 발생생태)

  • Shin, Jong-Sup;Park, Jong-Kyu;Kim, Gyoung-Hee;Park, Jae-Young;Han, Hyo-Shim;Jung, Jae-Sung;Hur, Jae-Seoun;Koh, Young-Jin
    • Research in Plant Disease
    • /
    • v.10 no.4
    • /
    • pp.290-296
    • /
    • 2004
  • Bacterial blossom blight is one of the most important diseases of kiwifruit (Actinidia deliciosa). The disease occurs during flowering in the late May and disease outbreaks associated with rainfall during the flowering season have resulted in a severe reduction in kiwifruit production. The causal organism isolated from diseased blossoms of kiwifruits was identified as Pseudomonas syringae pv, syringae based on the physiological and biochemical characteristics and pathogenicity test. Dead fruit stalks, dead pruned twigs, fallen leaves and soils mainly provided R syringae pv. syringae with overwintering places in the kiwifruit orchards, and the inocula also overwintered on buds, trunks, branches, and twigs on the kiwifruit trees. Among the overwintering places, the incula were detected in the highest frequencies from dead fruit stalks. The population density of P. syringae pv. syringae was speculated to be over $1{\times}10^4$cfu/ml for the bacterial infection, and the optimum temperature for the bacterial growth ranged 20 to $25^{\circ}C$. The highest population density of P. syringae pv. syringae on the overwintering places was detected in May and June when the daily average temperature coincided with the optimum temperature for bacterial growth of P. syringae pv. syringae.

Transformation of a Filamentous Fungus Cryphonectria parasitica Using Agrobacterium tumefaciens

  • Park, Seung-Moon;Kim, Dae-Hyuk
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.9 no.3
    • /
    • pp.217-222
    • /
    • 2004
  • As Agrobacterium tumefaciens, which has long been used to transform plants, is known to transfer T-DNA to budding yeast, Saccharomyces cerevisiae, a variety of fungi were subjected to the A. tumefaciens-mediated transformation to improve their transformation frequency and feasibility. The A. tumefaciens-mediated transformation of chestnut blight fungus, Cryphonectria parasitica, is performed in this study as the first example of transformation of a hardwood fungal pathogen. The transfer of the binary vector pBIN9-Hg, containing the bacterial hygromycin B phosphotransferase gene under the control of the Aspergillus nidulans trpC promoter and terminator, as a selectable marker, led to the selection of more than 1,000 stable, hygromycin B-resistant transformants per 1${\times}$10$\^$6/ conidia of C. parasitica. The putative transformants appeared to be mitotically stable. The transformation efficiency appears to depend on the bacterial strain, age of the bacteria cell culture and ratio of fungal spores to bacterial cells. PCR and Southern blot analysis indicated that the marker gene was inserted at different chromosomal sites. Moreover, three transformants out of ten showed more than two hybridizing bands, suggesting more than two copies of the inserted marker gene are not uncommon.

Diseases of Ginseng: Environmental and host effect on disease outbreak and growth of pathogens. (인삼의 환경 및 기주조건과 발병과의 관계)

  • 오승환
    • Journal of Ginseng Research
    • /
    • v.5 no.1
    • /
    • pp.73-84
    • /
    • 1981
  • Effect of environmental factors and host on the growth and outbreak of various ginseng diseases was reviewed Environmental lectors included hydrogen ion concentration, moisture content, temperature, nutrition, and microbiol populations. Age of the ginseng plants in relation to several ginseng disease occurrence was also included in order to formulate the effective control measure for ginseng diseases. Damping-off caused by Rhizoctonia, Pythium, and Phytophthora, greymold by Botrytis, sclerotinia by Scleretinia, and phytophthora blight caused by Phytophthora were usually prevalent during the early growing season of ginseng when temperature is below 20$^{\circ}C$, while anthrac se caused by Colletotrichum, alternaria blight by Alternaria, and bacterial soft rot by Erwinia were so during the latter growing season when temperature is above 25$^{\circ}C$. However, the root rot incited by Fnarium and Cylindrocarpon caused severe damages throughout the growing season. Growth range of the temperature for a pathogen was highly related to the corresponding disease outbreak. Hydrogen ion concentration was highly related to the outbreak of sclerotinia, root rot, and red rot. Most severe outbreak of those diseases where the soil acidity was pH 4.7, pH 6.5- 7.5, and pH6.0-6.5, respectively. Nitrogen content in the soil was also related to outbreak of root rot and red rot. More red rot occurred where NH,-nitrogen is above 30 ppm and more root rot obtained when excessive nitrogen fertilizer applied. Yellow necrosis apparently was related to magnesium especially its ratio with potassium or calcium content in a soil. Fusarium Population showed significant .relations to missing rate of ginseng Plants in a Implanting ginseng field, while that of total bacteria showed similar relations in all ginseng field, However, in six year old ginseng fields, the more the Streptomyces population was, the less the Fusarium obtained. Consequently, less missing rate observed in a field where Streptomyces population was high. Damping-off, root rot, Rhytophthor a blight were mose severe on the nursery and on 2-3 years old ginseng plants, whereas sclerotinia, and grey cod, alteraria blight, anthracnose were severe on 4-6 years old ginseng plants. Root rot caused by Fusarium and Erwinia, however, was also severe regardless of the age of the plants when the roots were injured. Therefore, for the effective control of ginseng root rot most careful control of the disease during the early year should be rendered.

  • PDF

Copper-Based Compounds against Erwinia amylovora: Response Parameter Analysis and Suppression of Fire Blight in Apple

  • Duck Kyu, Ryu;Mahesh, Adhikari;Dong Hyuk, Choi;Kyung Jin, Jun;Do Hyoung, Kim;Chae Ryeong, Kim;Min Kyu, Kang;Duck Hwan, Park
    • The Plant Pathology Journal
    • /
    • v.39 no.1
    • /
    • pp.52-61
    • /
    • 2023
  • Fire blight, caused by Erwinia amylovora, is one of the major bacterial disease of apple and pear, causing enormous economic losses worldwide. Several control measures against E. amylovora have been reported till date, however, none of them have proved to be effective significantly against the pathogen. In this study, mechanisms of the copper-based control agents (CBCAs): copper oxychloride (COCHL), copper oxide (COX), copper hydroxide (CHY), copper sulfate basic (CSB), and tribasic copper sulfate (TCS) and their disease severity reduction efficacy against E. amylovora were analyzed. Bis-1,3-dibutylbarbituric acid trimethine oxonol, carboxyl fluorescein diacetate succinimidyl ester, and 5-cyano-2,3-ditolyl tetrazolium chloride staining were used to check the damage of membrane potential, cytoplasmic pHin, and respiration of CBCAs-treated E. amylovora, respectively. High disturbance in the membrane potential of E. amylovora was found under COX and COCHL treatments. Similarly, higher significant changes in the inner cytoplasmic pHin were observed under COX, COCHL, and TCS treatment. CHY and COCHL-treated E. amylovora showed a significant reduction in respiration. In vitro bioassay results revealed that CHY, CSB, and TCS at 2,000 ppm reduced the severity of fire blight both in pre- and post-treatment of CBCAs in immature apple fruits and seedlings. Overall, the most effective CBCAs against E. amylovora could be CHY at 2,000 ppm as its showed inhibition mechanisms and disease severity reduction.

Overexpression of rice NAC transcription factor OsNAC58 on increased resistance to bacterial leaf blight (전사인자 OsNAC58 과발현을 통한 벼 흰잎마름병 저항성 증진 벼)

  • Park, Sang Ryeol;Kim, Hye Seon;Lee, Kyong Sil;Hwang, Duk-Ju;Bae, Shin-Chul;Ahn, Il-Pyung;Lee, Seo Hyun;Kim, Sun Tae
    • Journal of Plant Biotechnology
    • /
    • v.44 no.2
    • /
    • pp.149-155
    • /
    • 2017
  • Bacterial blight in rice caused by Xanthomonas oryzae pv. oryzae (Xoo) greatly reduces the growth and productivity of this important food crop. Therefore, we sought to increase the resistance of rice to bacterial blight by using a NAC (NAM, ATAF, and CUC) transcription factor, one of the plant-specific transcription factors that is known to be involved in biotic/abiotic stress resistance. By isolating the OsNAC58 gene from rice and analyzing its biological functions related to Xoo resistance, phylogenetic analysis showed that OsNAC58 belongs to group III. To investigate the biological relationship between bacterial leaf blight (BLB) and OsNAC58 in rice, we constructed a vector for overexpression in rice and generated transgenic rice. The expression analysis resulting from use of RT-PCR showed that OsNAC58-overexpressed transgenic rice exhibited higher levels of OsNAC58 expression than wild types. Further, subcellular localization analysis using rice protoplasts showed that the 35S/OsNAC58-SmGFP fusion protein was localized in the nuclei. Thirteen OsNAC58-overexpressed transgenic rice lines, with high expression levels of OsNAC58, showed more resistant to Xoo than did the wild types. Together, these results suggest that the OsNAC58 gene of rice regulates the rice disease resistance mechanism in the nucleus upon invasion of the rice bacterial blight pathogen Xoo.