• 제목/요약/키워드: bacterial biofilm

Search Result 261, Processing Time 0.025 seconds

Electricity Generation from MFCs Using Differently Grown Anode-Attached Bacteria

  • Nam, Joo-Youn;Kim, Hyun-Woo;Lim, Kyeong-Ho;Shin, Hang-Sik
    • Environmental Engineering Research
    • /
    • v.15 no.2
    • /
    • pp.71-78
    • /
    • 2010
  • To understand the effects of acclimation schemes on the formation of anode biofilms, different electrical performances are characterized in this study, with the roles of suspended and attached bacteria in single-chamber microbial fuel cells (MFCs). The results show that the generation of current in single-chamber MFCs is significantly affected by the development of a biofilm matrix on the anode surface containing abundant immobilized microorganisms. The long-term operation with suspended microorganisms was demonstrated to form a dense biofilm matrix that was able to reduce the activation loss in MFCs. Also, a Pt-coated anode was not favorable for the initial or long-term bacterial attachment due to its high hydrophobicity (contact angle = $124^{\circ}$), which promotes easy detachment of the biofilm from the anode surface. Maximum power ($655.0\;mW/m^2$) was obtained at a current density of $3,358.8\;mA/m^2$ in the MFCs with longer acclimation periods. It was found that a dense biofilm was able to enhance the charge transfer rates due to the complex development of a biofilm matrix anchoring the electrochemically active microorganisms together on the anode surface. Among the major components of the extracellular polymeric substance, carbohydrates ($85.7\;mg/m^2_{anode}$) and proteins ($81.0\;mg/m^2_{anode}$) in the dense anode biofilm accounted for 17 and 19%, respectively, which are greater than those in the sparse anode biofilm.

Inhibition of Streptococcus mutans biofilm formation on composite resins containing ursolic acid

  • Kim, Soohyeon;Song, Minju;Roh, Byoung-Duck;Park, Sung-Ho;Park, Jeong-Won
    • Restorative Dentistry and Endodontics
    • /
    • v.38 no.2
    • /
    • pp.65-72
    • /
    • 2013
  • Objectives: To evaluate the inhibitory effect of ursolic acid (UA)-containing composites on Streptococcus mutans (S. mutans) biofilm. Materials and Methods: Composite resins with five different concentrations (0.04, 0.1, 0.2, 0.5, and 1.0 wt%) of UA (U6753, Sigma Aldrich) were prepared, and their flexural strengths were measured according to ISO 4049. To evaluate the effect of carbohydrate source on biofilm formation, either glucose or sucrose was used as a nutrient source, and to investigate the effect of saliva treatment, the specimen were treated with either unstimulated whole saliva or phosphate-buffered saline (PBS). For biofilm assay, composite disks were transferred to S. mutans suspension and incubated for 24 hr. Afterwards, the specimens were rinsed with PBS and sonicated. The colony forming units (CFU) of the disrupted biofilm cultures were enumerated. For growth inhibition test, the composites were placed on a polystyrene well cluster, and S. mutans suspension was inoculated. The optical density at 600 nm ($OD_{600}$) was recorded by Infinite F200 pro apparatus (TECAN). One-way ANOVA and two-way ANOVA followed by Bonferroni correction were used for the data analyses. Results: The flexural strength values did not show significant difference at any concentration (p > 0.01). In biofilm assay, the CFU score decreased as the concentration of UA increased. The influence of saliva pretreatment was conflicting. The sucrose groups exhibited higher CFU score than glucose group (p < 0.05). In bacterial growth inhibition test, all experimental groups containing UA resulted in complete inhibition. Conclusions: Within the limitations of the experiments, UA included in the composite showed inhibitory effect on S. mutans biofilm formation and growth.

Inhibition of Food-derived Lactic Acid Bacterial Biofilm Formation Using Eisenia bicyclis-derived Nanoparticles (식품 유래 Biofilm 형성 유산균에 대한 대황(Eisenia bicyclis) 유래 Nanoparticle의 Biofilm 형성 저해)

  • Do Kyung Oh;Fazlurrahman Khan;Seul-Ki Park;Du-Min Jo;Kyung-Jin Cho;Geum-Jae Jeong;Yeon-Ju Sim;Jeong Mi Choi;Jae-Ho Woon;Young-Mog Kim
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.57 no.2
    • /
    • pp.129-136
    • /
    • 2024
  • Lactic acid bacteria (LAB) growth in processed meat products produces slime. In this study, 10 different biofilm-forming LAB, including Leuconostoc mesenteroides, Lacticaseibacillus paracasei, Levilactobacillus brevis, Lactiplantibacillus plantarum, Leuconostoc citreum, Weissella viridescens, and Latilactobacillus sakei, were isolated from various meat products and identified based on 16S rRNA gene analysis. To inhibit biofilm formation by LABs, Eisenia bicycles methanolic extract (EB) and ethyl acetate soluble fraction (EA) were used as antibacterial and antibiofilm agents, respectively. Furthermore, EA and EB were employed to synthesize gold nanoparticles (AuNPs) such as EB-AuNPs and EA-AuNPs, which could serve as antibiofilm agents against the isolated LAB. These findings demonstrate that EA, EB-AuNPs, and EA-AuNPs exhibit significant antibacterial activity against the isolated LAB. Furthermore, EB-AuNPs reduced L. citreum biofilm production, whereas EA-AuNPs inhibited L. mesenteroides and L. brevis biofilm formation. The current results suggest that EB-AuNPs and EA-AuNPs can be used as nanomaterials to inhibit LAB that form biofilms on meat products.

CLPP of Biofilm on Different Pipe Materials in Drinking Water Distribution System (수돗물속에서 관재질에 따른 생물막의 CLPP)

  • Lee Dong-Geun;Lee Jae-Hwa;Lee Sang-Hyeon;Ha Bae-Jin;Ha Jong-Myung
    • Journal of Life Science
    • /
    • v.14 no.6 s.67
    • /
    • pp.891-894
    • /
    • 2004
  • The effect of pipe materials on biofilm communities were investigated by CLPP (community level physiology profile) using Biolog GN plates. Heterotrophic bacterial concentrations were $10^4\;-\;10^6\;CFU/cm^2$ and there was no differences between galvanized iron and carbon steel. Average optical density of Biolog plate was similar between two pipe materials. However, CLPP was different according to the type of pipe materials and exposed times to tap water, and CLPP was independent of bacterial concentration. This represents the differences of bacterial communities with pipes and water contact times.

Chelating and antibacterial properties of chitosan nanoparticles on dentin

  • del Carpio-Perochena, Aldo;Bramante, Clovis Monteiro;Duarte, Marco Antonio Hungaro;de Moura, Marcia Regina;Aouada, Fauze Ahmad;Kishen, Anil
    • Restorative Dentistry and Endodontics
    • /
    • v.40 no.3
    • /
    • pp.195-201
    • /
    • 2015
  • Objectives: The use of chitosan nanoparticles (CNPs) in endodontics is of interest due to their antibiofilm properties. This study was to investigate the ability of bioactive CNPs to remove the smear layer and inhibit bacterial recolonization on dentin. Materials and Methods: One hundred bovine dentin sections were divided into five groups (n = 20 per group) according to the treatment. The irrigating solutions used were 2.5% sodium hypochlorite (NaOCl) for 20 min, 17% ethylenediaminetetraacetic acid (EDTA) for 3 min and 1.29 mg/mL CNPs for 3 min. The samples were irrigated with either distilled water (control), NaOCl, NaOCl-EDTA, NaOCl-EDTA-CNPs or NaOCl-CNPs. After the treatment, half of the samples (n = 50) were used to assess the chelating effect of the solutions using portable scanning electronic microscopy, while the other half (n = 50) were infected intra-orally to examine the post-treatment bacterial biofilm forming capacity. The biovolume and cellular viability of the biofilms were analysed under confocal laser scanning microscopy. The Kappa test was performed for examiner calibration, and the non-parametric Kruskal-Wallis and Dunn tests (p < 0.05) were used for comparisons among the groups. Results: The smear layer was significantly reduced in all of the groups except the control and NaOCl groups (p < 0.05). The CNPs-treated samples were able to resist biofilm formation significantly better than other treatment groups (p < 0.05). Conclusions: CNPs could be used as a final irrigant during root canal treatment with the dual benefit of removing the smear layer and inhibiting bacterial recolonization on root dentin.

Anti-Oomycete Activity and Pepper Root Colonization of Pseudomonas plecoglossicida YJR13 and Pseudomonas putida YJR92 against Phytophthora capsici

  • Elena, Volynchikova;Ki Deok, Kim
    • The Plant Pathology Journal
    • /
    • v.39 no.1
    • /
    • pp.123-135
    • /
    • 2023
  • Previously, Pseudomonas plecoglossicida YJR13 and Pseudomonas putida YJR92 from a sequential screening procedure were proven to effectively control Phytophthora blight caused by Phytophthora capsici. In this study, we further investigated the anti-oomycete activities of these strains against mycelial growth, zoospore germination, and germ tube elongation of P. capsici. We also investigated root colonization ability of the bacterial strains in square dishes, including cell motility (swimming and swarming motilities) and biofilm formation. Both strains significantly inhibited mycelial growth in liquid and solid V8 juice media and M9 minimal media, zoospore germination, and germ tube elongation compared with Bacillus vallismortis EXTN-1 (positive biocontrol strain), Sphingomonas aquatilis KU408 (negative biocontrol strain), and MgSO4 solution (untreated control). In diluted (nutrient-deficient) V8 juice broth, the tested strain populations were maintained at >108 cells/ml, simultaneously providing mycelial inhibitory activity. Additionally, these strains colonized pepper roots at a 106 cells/ml concentration for 7 days. The root colonization of the strains was supported by strong swimming and swarming activities, biofilm formation, and chemotactic activity towards exudate components (amino acids, organic acids, and sugars) of pepper roots. Collectively, these results suggest that strains YJR13 and YJR92 can effectively suppress Phytophthora blight of pepper through direct anti-oomycete activities against mycelial growth, zoospore germination and germ tube elongation. Bacterial colonization of pepper roots may be mediated by cell motility and biofilm formation together with chemotaxis to root exudates.

Anti-Oral Microbial Effect of Ethanol Extract of Angelica gigas Nakai

  • Soon-Jeong Jeong
    • Journal of dental hygiene science
    • /
    • v.24 no.1
    • /
    • pp.54-61
    • /
    • 2024
  • Background: The Korean name for Angelica gigas Nakai (AGN) is Cham-dang-gui, which grows naturally or is cultivated, and its dried roots are used in traditional herbal medicines. The AGN root exert various pharmacological effects. Despite the various pharmacological effects of the AGN root, there are no reports on its anti-oral microbial effects. The purpose of this study was to reveal the anti-oral microbial effect and the microbial and biochemical changes in oral microorganisms according to the concentration of the ethanol extract of AGN (EAGN) root, and to confirm the possibility of using EAGN as a plant-derived functional substance for controlling oral infectious microorganisms. Methods: Disk diffusion test, growth measurement, biofilm formation assay, and measurements of acid production and buffering capacity were performed to confirm the antibacterial effect of EAGN. Results: EAGN showed anti-oral bacterial effects against Streptococcus mutans and Aggregatibacter actinomycetemcomitans at all concentrations, with S. mutans showing a more susceptible effect at concentrations above 5.0 mg/ml and A. actinomycetemcomitans at 3.75 mg/ml. EAGN treatment significantly reduced A. actinomycetemcomitans growth at all concentrations tested. Biofilm formation was significantly reduced at concentrations above 3.75 mg/ml for S. mutans and 2.5 mg/ml for A. actinomycetemcomitans. Acid production in S. mutans and A. actinomycetemcomitans was significantly increased by treatment with EAGN, and the buffering capacities of S. mutans and A. actinomycetemcomitans increased from an EAGN concentration of 3.75 mg/ml and above. Conclusion: EAGN showed anti-oral bacterial effects against both S. mutans and A. actinomycetemcomitans at concentrations above 3.75 mg/ml, which were thought to be related to the inhibition of their growth and biofilm formation. Therefore, EAGN can be used as a safe functional substance derived from medicinal plants owing to its antibacterial effects against S. mutans and A. actinomycetemcomitans.

Antibacterial Effect of Chitosan-Modified Fe3O4 Nanozymes on Acinetobacter baumannii

  • Wang, Wenjun;Wu, ziman;Shi, peiru;Wu, pinyun;Qin, peng;Yu, lin
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.2
    • /
    • pp.263-267
    • /
    • 2022
  • The aim of this study was to determine whether the antibacterial activity of chitosan-modified Fe3O4 (CS@Fe3O4) nanomaterials against Acinetobacter baumannii (A. baumannii) is mediated through changes in biofilm formation and reactive oxygen species (ROS) production. For this purpose, the broth dilution method was used to examine the effect of CS@Fe3O4 nanoparticles on bacterial growth. The effects of CS@Fe3O4 nanoparticles on biofilm formation were measured using a semi-quantitative crystal violet staining assay. In addition, a bacterial ROS detection kit was used to detect the production of ROS in bacteria. The results showed that CS@Fe3O4 nanoparticles had a significant inhibitory effect on the colony growth and biofilm formation of drug-resistant A. baumannii (p < 0.05). The ROS stress assay revealed significantly higher ROS levels in A. baumannii subjected to CS@Fe3O4 nanoparticle treatment than the control group (p < 0.05). Thus, we demonstrated for the first time that CS@Fe3O4 nanoparticles had an inhibitory effect on A. baumannii in vitro, and that the antibacterial effect of CS@Fe3O4 nanoparticles on drug-resistant A. baumannii was more significant than on drug-sensitive bacteria. Our findings suggest that the antibacterial mechanism of CS@Fe3O4 nanoparticles is mediated through inhibition of biofilm formation in drug-resistant bacteria, as well as stimulation of A. baumannii to produce ROS. In summary, our data indicate that CS@Fe3O4 nanoparticles could be used to treat infections caused by drug-resistant A. baumannii.

Chemical Composition and Quorum Sensing Inhibitory Effect of Nepeta curviflora Methanolic Extract against ESBL Pseudomonas aeruginosa

  • Haitham Qaralleh
    • Journal of Pharmacopuncture
    • /
    • v.26 no.4
    • /
    • pp.307-318
    • /
    • 2023
  • Objectives: Bacterial biofilm is regarded as a significant threat to the production of safe food and the arise of antibiotic-resistant bacteria. The objective of this investigation is to evaluate the quorum sensing inhibitory effect of Nepeta curviflora methanolic extract. Methods: The effectiveness of the leaves at sub-inhibitory concentrations of 2.5, 1.25, and 0.6 mg/mL on the virulence factors and biofilm formation of P. aeruginosa was evaluated. The effect of N. curviflora methanolic extract on the virulence factors of P. aeruginosa, including pyocyanin, rhamnolipid, protease, and chitinase, was evaluated. Other tests including the crystal violet assay, scanning electron microscopy (SEM), swarming motility, aggregation ability, hydrophobicity and exopolysaccharide production were conducted to assess the effect of the extract on the formation of biofilm. Insight into the mode of antiquorum sensing action was evaluated by examining the effect of the extract on the activity of N-Acyl homoserine lactone (AHL) and the expression of pslA and pelA genes. Results: The results showed a significant attenuation in the production of pyocyanin and rhamnolipid and in the activities of protease and chitinase enzymes at 2.5 and 1.25 mg/mL. In addition, N. curviflora methanolic extract significantly inhibited the formation of P. aeruginosa biofilm by decreasing aggregation, hydrophobicity, and swarming motility as well as the production of exopolysaccharide (EPS). A significant reduction in AHL secretion and pslA gene expression was observed, indicating that the extract inhibited quorum sensing by disrupting the quorum-sensing systems. The quorum-sensing inhibitory effect of N. curviflora extract appears to be attributed to the presence of kaempferol, quercetin, salicylic acid, rutin, and rosmarinic acid, as indicated by LCMS analysis. Conclusion: The results of the present study provide insight into the potential of developing anti-quorum sensing agents using the extract and the identified compounds to treat infections resulting from quorum sensing-mediated bacterial pathogenesis.

A Unique Prokaryotic Assemblage of Wall Biofilm of a Volcanic Cave (Daesubee) in Jeju (제주도 용암동굴 대섭이굴 미생물 막의 독특한 원핵미생물 군집)

  • Moon, Jong-Geun;Jung, Man-Young;Kim, Jong-Geol;Park, Soo-Je;Kim, Dae-Shin;Kim, Jong-Shik;Rhee, Sung-Keun
    • Korean Journal of Microbiology
    • /
    • v.49 no.2
    • /
    • pp.184-190
    • /
    • 2013
  • Cave environment provides special ecosystems for evolution of lives distant from surface environments. We investigated bacterial and archaeal communities of wall biofilm obtained from of a volcanic cave (Daesubee) in Jeju, Republic of Korea. Bacterial and archaeal 16S rRNA genes were PCR-amplified and sequenced using pyrosequencing technologies. Unique prokaryotic communities with low diversities were observed. The main bacterial sequences (ca. 83% of total reads) were affiliated with Pseudonocardia mongoliensis of phylum Actinobacteria and clustered with clones obtained from various caves. Reflection of light on the wall surface of cave might be caused by formation of beads of water caused by hydrophobic filaments of actinobacterial colonies. Main archaeal sequences (ca. 65.7% of total reads) were related with those of I.1a-Associated group of phylum Thaumarchaeota. The sequences were related with that of Candidatus Nitrosotalea devanaterra which was known to oxidize ammonia under acidic condition (ca. pH 5.0). Nutrients leached through volcanic soils contribute formation of unique microbial communities of wall biofilm of cave Daesubee.