DOI QR코드

DOI QR Code

A Unique Prokaryotic Assemblage of Wall Biofilm of a Volcanic Cave (Daesubee) in Jeju

제주도 용암동굴 대섭이굴 미생물 막의 독특한 원핵미생물 군집

  • Received : 2013.04.08
  • Accepted : 2013.05.30
  • Published : 2013.06.30

Abstract

Cave environment provides special ecosystems for evolution of lives distant from surface environments. We investigated bacterial and archaeal communities of wall biofilm obtained from of a volcanic cave (Daesubee) in Jeju, Republic of Korea. Bacterial and archaeal 16S rRNA genes were PCR-amplified and sequenced using pyrosequencing technologies. Unique prokaryotic communities with low diversities were observed. The main bacterial sequences (ca. 83% of total reads) were affiliated with Pseudonocardia mongoliensis of phylum Actinobacteria and clustered with clones obtained from various caves. Reflection of light on the wall surface of cave might be caused by formation of beads of water caused by hydrophobic filaments of actinobacterial colonies. Main archaeal sequences (ca. 65.7% of total reads) were related with those of I.1a-Associated group of phylum Thaumarchaeota. The sequences were related with that of Candidatus Nitrosotalea devanaterra which was known to oxidize ammonia under acidic condition (ca. pH 5.0). Nutrients leached through volcanic soils contribute formation of unique microbial communities of wall biofilm of cave Daesubee.

동굴환경은 표면 토양환경과는 다른 독특한 생태계를 이루는 것으로 알려져 있다. 본 연구를 통하여 제주도 용암동굴(대섭이굴)의 생물막(biofilm)으로부터 얻은 시료를 pyrosequencing 기술을 통해 16S rRNA 유전자를 증폭하여 세균과 고세균의 군집을 조사하였다. 생물막에 우점하는 세균은 Actinobacteria문(phylum)의 Pseudonocardia mongoliensis (전체 세균 reads수의 82.5%)와 깊은 근연관계가 있었으며, 동굴유래의 다양한 세균들과 같이 무리(cluster)를 형성하였다. 동굴 벽면에 빛을 조사하였을 때 반사되어 빛나는 것은 아마도 방선균의 균사(hypha)들로 이루어진 생물막이 수분을 흡수하지 못하기 때문으로 추정된다. 우점하는 고세균은 Thaumarchaeota문의 I.1a-Associated group (전체 archaeal reads수의 약 66%)에 속한다. 이 고세균 염기서열은 산성 환경(약 pH 5.0)에서 암모니아를 산화하는 고세균으로 알려진 Candidatus Nitrosotalea devanaterra와 높은 근연관계에 있어 동굴환경에서의 질산화에 중요한 기능을 하고 있을 것으로 추정된다. 표층수가 용암토양을 투과하는 과정에서 침출(Leaching)되는 영양분이 대섭이굴 벽면에 다양성이 낮은 독특한 미생물 군집을 형성하는데 기여하고 있는 것으로 추정된다.

Keywords

References

  1. Ara, I., Tsetseg, B., Daram, D., Suto, M., and Ando, K. 2011. Pseudonocardia mongoliensis sp. nov. and Pseudonocardia khuvsgulensis sp. nov., isolated from soil. Int. J. Syst. Evol. Microbiol. 61, 747-756. https://doi.org/10.1099/ijs.0.019562-0
  2. Borsodi, A.K., Knab, M., Krett, G., Makk, J., Marialigeti, K., Eross, A., and Madl-Szonyi, J. 2012. Biofilm bacterial communities inhabiting the cave walls of the buda thermal karst system, hungary. Geomicrobiol. J. 29, 611-627. https://doi.org/10.1080/01490451.2011.602801
  3. Brochier-Armanet, C., Boussau, B., Gribaldo, S., and Forterre, P. 2008. Mesophilic Crenarchaeota: proposal for a third archaeal phylum, the Thaumarchaeota. Nat. Rev. Microbiol. 6, 245-252. https://doi.org/10.1038/nrmicro1852
  4. Cañveras, J.C., Sanchez-Moral, S., Soler, V., and Saiz-Jimenez, C. 2001. Microorganisms and microbially induced fabrics in cave walls. Geomicrobiol. J. 18, 223-240. https://doi.org/10.1080/01490450152467769
  5. Chelius, M.K. and Moore, J.C. 2004. Molecular phylogenetic analysis of Archaea and Bacteria in wind cave, South Dakota. Geomicrobiol. J. 21, 123-134. https://doi.org/10.1080/01490450490266389
  6. Chen, Y., Wu, L., Boden, R., Hillebrand, A., Kumaresan, D., Moussard, H., Baciu, M., Lu, Y., and Colin Murrell, J. 2009. Life without light: microbial diversity and evidence of sulfur- and ammonium-based chemolithotrophy in Movile Cave. ISME J. 3, 1093-1104. https://doi.org/10.1038/ismej.2009.57
  7. Clark, W.B., Lane, M.D., Beem, J.E., Bragg, S.L., and Wheeler, T.T. 1985. Relative hydrophobicities of Actinomyces viscosus and Actinomyces naeslundii strains and their adsorption to saliva-treated hydroxyapatite. Infect. Immun. 47, 730-736.
  8. Cole, J.R., Chai, B., Farris, R.J., Wang, Q., Kulam-Syed-Mohideen, A.S., McGarrell, D.M., Bandela, A.M., Cardenas, E., Garrity, G.M., and Tiedje, J.M. 2007. The ribosomal database project (RDP-II): introducing myRDP space and quality controlled public data. Nucleic Acids Res. 35, D169-172. https://doi.org/10.1093/nar/gkl889
  9. Ding, H. and Lammler, C. 1992. Cell surface hydrophobicity of Actinomyces pyogenes determined by hexadecane adherence- and salt aggregation studies. Zentralb.l Veterinarmed. B 39, 132-138.
  10. Edgar, R.C., Haas, B.J., Clemente, J.C., Quince, C., and Knight, R. 2011. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27, 2194-2200. https://doi.org/10.1093/bioinformatics/btr381
  11. Gonzalez, J., Portillo, M.C., and Saiz-Jimenez, C. 2006. Metabolically active Crenarchaeota in Altamira Cave. Naturwissenschaften 93, 42-45. https://doi.org/10.1007/s00114-005-0060-3
  12. Good, I.J. 1953. The population frequencies of species and the estimation of population parameters. Biometrika 40, 237-264. https://doi.org/10.1093/biomet/40.3-4.237
  13. Groth, I., Schumann, P., Laiz, L., Sanchez-Moral, S., Canaveras, J.C., and Saiz-Jimenez, C. 2001. Geomicrobiological study of the Grotta dei Cervi, Porto Badisco, Italy. Geomicrobiol. J. 18, 241-258. https://doi.org/10.1080/01490450152467778
  14. Jung, M.Y., Park, S.J., Min, D., Kim, J.S., Rijpstra, W.I., Sinninghe Damste, J.S., Kim, G.J., Madsen, E.L., and Rhee, S.K. 2011. Enrichment and characterization of an autotrophic ammonia-oxidizing archaeon of mesophilic crenarchaeal group I.1a from an agricultural soil. Appl. Environ. Microbiol. 77, 8635-8647. https://doi.org/10.1128/AEM.05787-11
  15. Kim, J.G., Jung, M.Y., Park, S.J., Rijpstra, W.I., Sinninghe Damste, J.S., Madsen, E.L., Min, D., Kim, J.S., Kim, G.J., and Rhee, S.K. 2012. Cultivation of a highly enriched ammonia-oxidizing archaeon of thaumarchaeotal group I.1b from an agricultural soil. Environ. Microbiol. 14, 1528-1543. https://doi.org/10.1111/j.1462-2920.2012.02740.x
  16. Kim, G.J., Park, S.J., Cha, I.T., Kim, S.J., Kim, K.H., Yang, E.J., Kim, Y.N., Lee, S.H., and Rhee, S.K. 2013. Unveiling abundance and distribution of planktonic bacteria and archaea in a Polynya in Amundsen Sea, Antarctica. in review.
  17. Lee, J.H., Yi, H., Jeon, Y.S., Won, S., and Chun, J. 2012. TBC: a clustering algorithm based on prokaryotic taxonomy. J. Microbiol. 50, 181-185. https://doi.org/10.1007/s12275-012-1214-6
  18. Lehtovirta, L.E., Prosser, J.I., and Nicol, G.W. 2009. Soil pH regulates the abundance and diversity of Group 1.1c Crenarchaeota. FEMS Microbiol. Ecol. 70, 367-376. https://doi.org/10.1111/j.1574-6941.2009.00748.x
  19. Lehtovirta-Morley, L.E., Stoecker, K., Vilcinskas, A., Prosser, J.I., and Nicol, G.W. 2011. Cultivation of an obligate acidophilic ammonia oxidizer from a nitrifying acid soil. Proc. Natl. Acad. Sci. USA 108, 15892-15897. https://doi.org/10.1073/pnas.1107196108
  20. Leininger, S., Urich, T., Schloter, M., Schwark, L., Qi, J., Nicol, G.W., Prosser, J.I., Schuster, S.C., and Schleper, C. 2006. Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature 442, 806-809. https://doi.org/10.1038/nature04983
  21. Northup, D.E., Melim, L.A., Spilde, M.N., Hathaway, J.J., Garcia, M.G., Moya, M., Stone, F.D., Boston, P.J., Dapkevicius, M.L., and Riquelme, C. 2011. Lava cave microbial communities within mats and secondary mineral deposits: implications for life detection on other planets. Astrobiology 11, 601-618. https://doi.org/10.1089/ast.2010.0562
  22. Ovreas, L., Forney, L., Daae, F.L., and Torsvik, V. 1997. Distribution of bacterioplankton in meromictic Lake Saelenvannet, as determined by denaturing gradient gel electrophoresis of PCR-amplified gene fragments coding for 16S rRNA. Appl. Environ. Microbiol. 63, 3367 -3373.
  23. Oyvind, H., Harper, D.A.T., and Ryan, P.D. 2001. Past: paleontological statistics software package for education and data analysis. Palaeontologia Electronica. 4, 9.
  24. Park, S.-J., Park, B.-J., and Rhee, S.-K. 2008. Comparative analysis of archaeal 16S rRNA and amoA genes to estimate the abundance and diversity of ammonia-oxidizing archaea in marine sediments. Extremophiles 12, 605-615. https://doi.org/10.1007/s00792-008-0165-7
  25. Pasic, L., Kovce, B., Sket, B., and Herzog-Velikonja, B. 2010. Diversity of microbial communities colonizing the walls of a Karstic cave in Slovenia. FEMS Microbiol. Ecol. 71, 50-60. https://doi.org/10.1111/j.1574-6941.2009.00789.x
  26. Portillo, M.C., Gonzalez, J.M., and Saiz-Jimenez, C. 2008. Metabolically active microbial communities of yellow and grey colonizations on the walls of Altamira Cave, Spain. J. Appl. Microbiol. 104, 681-691. https://doi.org/10.1111/j.1365-2672.2007.03594.x
  27. Qian, P.Y., Wang, Y., Lee, O.O., Lau, S.C., Yang, J., Lafi, F.F., Al-Suwailem, A., and Wong, T.Y. 2011. Vertical stratification of microbial communities in the Red Sea revealed by 16S rDNA pyrosequencing. ISME J. 5, 507-518. https://doi.org/10.1038/ismej.2010.112
  28. Rhee, S.K., Liu, X., Wu, L., Chong, S.C., Wan, X., and Zhou, J. 2004. Detection of genes involved in biodegradation and biotransformation in microbial communities by using 50-mer oligonucleotide microarrays. Appl. Environ. Microbiol. 70, 4303-4317. https://doi.org/10.1128/AEM.70.7.4303-4317.2004
  29. Schloss, P.D., Westcott, S.L., Ryabin, T., Hall, J.R., Hartmann, M., Hollister, E.B., Lesniewski, R.A., Oakley, B.B., Parks, D.H., Robinson, C.J., and et al. 2009. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75, 7537-7541. https://doi.org/10.1128/AEM.01541-09
  30. Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., and Kumar, S. 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28, 2731-2739. https://doi.org/10.1093/molbev/msr121
  31. Tetu, S.G., Breakwell, K., Elbourne, L.D., Holmes, A.J., Gillings, M.R., and Paulsen, I.T. 2013. Life in the dark: metagenomic evidence that a microbial slime community is driven by inorganic nitrogen metabolism. ISME J. 7, 1227-1236. https://doi.org/10.1038/ismej.2013.14
  32. Vickerman, M.M., Brossard, K.A., Funk, D.B., Jesionowski, A.M., and Gill, S.R. 2007. Phylogenetic analysis of bacterial and archaeal species in symptomatic and asymptomatic endodontic infections. J. Med. Microbiol. 56, 110-118. https://doi.org/10.1099/jmm.0.46835-0