Browse > Article
http://dx.doi.org/10.7845/kjm.2013.3027

A Unique Prokaryotic Assemblage of Wall Biofilm of a Volcanic Cave (Daesubee) in Jeju  

Moon, Jong-Geun (Department of Microbiology, Chungbuk National University)
Jung, Man-Young (Department of Microbiology, Chungbuk National University)
Kim, Jong-Geol (Department of Microbiology, Chungbuk National University)
Park, Soo-Je (Department of Microbiology, Chungbuk National University)
Kim, Dae-Shin (Research Institute for Mt. Halla)
Kim, Jong-Shik (Gyeongbuk Institute for Marine Bio-Industry (GIMB))
Rhee, Sung-Keun (Department of Microbiology, Chungbuk National University)
Publication Information
Korean Journal of Microbiology / v.49, no.2, 2013 , pp. 184-190 More about this Journal
Abstract
Cave environment provides special ecosystems for evolution of lives distant from surface environments. We investigated bacterial and archaeal communities of wall biofilm obtained from of a volcanic cave (Daesubee) in Jeju, Republic of Korea. Bacterial and archaeal 16S rRNA genes were PCR-amplified and sequenced using pyrosequencing technologies. Unique prokaryotic communities with low diversities were observed. The main bacterial sequences (ca. 83% of total reads) were affiliated with Pseudonocardia mongoliensis of phylum Actinobacteria and clustered with clones obtained from various caves. Reflection of light on the wall surface of cave might be caused by formation of beads of water caused by hydrophobic filaments of actinobacterial colonies. Main archaeal sequences (ca. 65.7% of total reads) were related with those of I.1a-Associated group of phylum Thaumarchaeota. The sequences were related with that of Candidatus Nitrosotalea devanaterra which was known to oxidize ammonia under acidic condition (ca. pH 5.0). Nutrients leached through volcanic soils contribute formation of unique microbial communities of wall biofilm of cave Daesubee.
Keywords
Actinobacteria; Thaumarchaeota; biofilm; pyrosequencing technologies; volcanic cave;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Cole, J.R., Chai, B., Farris, R.J., Wang, Q., Kulam-Syed-Mohideen, A.S., McGarrell, D.M., Bandela, A.M., Cardenas, E., Garrity, G.M., and Tiedje, J.M. 2007. The ribosomal database project (RDP-II): introducing myRDP space and quality controlled public data. Nucleic Acids Res. 35, D169-172.   DOI   ScienceOn
2 Ding, H. and Lammler, C. 1992. Cell surface hydrophobicity of Actinomyces pyogenes determined by hexadecane adherence- and salt aggregation studies. Zentralb.l Veterinarmed. B 39, 132-138.
3 Edgar, R.C., Haas, B.J., Clemente, J.C., Quince, C., and Knight, R. 2011. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27, 2194-2200.   DOI   ScienceOn
4 Gonzalez, J., Portillo, M.C., and Saiz-Jimenez, C. 2006. Metabolically active Crenarchaeota in Altamira Cave. Naturwissenschaften 93, 42-45.   DOI
5 Vickerman, M.M., Brossard, K.A., Funk, D.B., Jesionowski, A.M., and Gill, S.R. 2007. Phylogenetic analysis of bacterial and archaeal species in symptomatic and asymptomatic endodontic infections. J. Med. Microbiol. 56, 110-118.   DOI   ScienceOn
6 Leininger, S., Urich, T., Schloter, M., Schwark, L., Qi, J., Nicol, G.W., Prosser, J.I., Schuster, S.C., and Schleper, C. 2006. Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature 442, 806-809.   DOI   ScienceOn
7 Northup, D.E., Melim, L.A., Spilde, M.N., Hathaway, J.J., Garcia, M.G., Moya, M., Stone, F.D., Boston, P.J., Dapkevicius, M.L., and Riquelme, C. 2011. Lava cave microbial communities within mats and secondary mineral deposits: implications for life detection on other planets. Astrobiology 11, 601-618.   DOI   ScienceOn
8 Ovreas, L., Forney, L., Daae, F.L., and Torsvik, V. 1997. Distribution of bacterioplankton in meromictic Lake Saelenvannet, as determined by denaturing gradient gel electrophoresis of PCR-amplified gene fragments coding for 16S rRNA. Appl. Environ. Microbiol. 63, 3367 -3373.
9 Oyvind, H., Harper, D.A.T., and Ryan, P.D. 2001. Past: paleontological statistics software package for education and data analysis. Palaeontologia Electronica. 4, 9.
10 Park, S.-J., Park, B.-J., and Rhee, S.-K. 2008. Comparative analysis of archaeal 16S rRNA and amoA genes to estimate the abundance and diversity of ammonia-oxidizing archaea in marine sediments. Extremophiles 12, 605-615.   DOI   ScienceOn
11 Pasic, L., Kovce, B., Sket, B., and Herzog-Velikonja, B. 2010. Diversity of microbial communities colonizing the walls of a Karstic cave in Slovenia. FEMS Microbiol. Ecol. 71, 50-60.   DOI   ScienceOn
12 Portillo, M.C., Gonzalez, J.M., and Saiz-Jimenez, C. 2008. Metabolically active microbial communities of yellow and grey colonizations on the walls of Altamira Cave, Spain. J. Appl. Microbiol. 104, 681-691.   DOI   ScienceOn
13 Qian, P.Y., Wang, Y., Lee, O.O., Lau, S.C., Yang, J., Lafi, F.F., Al-Suwailem, A., and Wong, T.Y. 2011. Vertical stratification of microbial communities in the Red Sea revealed by 16S rDNA pyrosequencing. ISME J. 5, 507-518.   DOI   ScienceOn
14 Rhee, S.K., Liu, X., Wu, L., Chong, S.C., Wan, X., and Zhou, J. 2004. Detection of genes involved in biodegradation and biotransformation in microbial communities by using 50-mer oligonucleotide microarrays. Appl. Environ. Microbiol. 70, 4303-4317.   DOI   ScienceOn
15 Schloss, P.D., Westcott, S.L., Ryabin, T., Hall, J.R., Hartmann, M., Hollister, E.B., Lesniewski, R.A., Oakley, B.B., Parks, D.H., Robinson, C.J., and et al. 2009. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75, 7537-7541.   DOI   ScienceOn
16 Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., and Kumar, S. 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28, 2731-2739.   DOI   ScienceOn
17 Jung, M.Y., Park, S.J., Min, D., Kim, J.S., Rijpstra, W.I., Sinninghe Damste, J.S., Kim, G.J., Madsen, E.L., and Rhee, S.K. 2011. Enrichment and characterization of an autotrophic ammonia-oxidizing archaeon of mesophilic crenarchaeal group I.1a from an agricultural soil. Appl. Environ. Microbiol. 77, 8635-8647.   DOI
18 Tetu, S.G., Breakwell, K., Elbourne, L.D., Holmes, A.J., Gillings, M.R., and Paulsen, I.T. 2013. Life in the dark: metagenomic evidence that a microbial slime community is driven by inorganic nitrogen metabolism. ISME J. 7, 1227-1236.   DOI
19 Good, I.J. 1953. The population frequencies of species and the estimation of population parameters. Biometrika 40, 237-264.   DOI
20 Groth, I., Schumann, P., Laiz, L., Sanchez-Moral, S., Canaveras, J.C., and Saiz-Jimenez, C. 2001. Geomicrobiological study of the Grotta dei Cervi, Porto Badisco, Italy. Geomicrobiol. J. 18, 241-258.   DOI
21 Kim, J.G., Jung, M.Y., Park, S.J., Rijpstra, W.I., Sinninghe Damste, J.S., Madsen, E.L., Min, D., Kim, J.S., Kim, G.J., and Rhee, S.K. 2012. Cultivation of a highly enriched ammonia-oxidizing archaeon of thaumarchaeotal group I.1b from an agricultural soil. Environ. Microbiol. 14, 1528-1543.   DOI   ScienceOn
22 Kim, G.J., Park, S.J., Cha, I.T., Kim, S.J., Kim, K.H., Yang, E.J., Kim, Y.N., Lee, S.H., and Rhee, S.K. 2013. Unveiling abundance and distribution of planktonic bacteria and archaea in a Polynya in Amundsen Sea, Antarctica. in review.
23 Lee, J.H., Yi, H., Jeon, Y.S., Won, S., and Chun, J. 2012. TBC: a clustering algorithm based on prokaryotic taxonomy. J. Microbiol. 50, 181-185.   DOI
24 Lehtovirta, L.E., Prosser, J.I., and Nicol, G.W. 2009. Soil pH regulates the abundance and diversity of Group 1.1c Crenarchaeota. FEMS Microbiol. Ecol. 70, 367-376.   DOI   ScienceOn
25 Brochier-Armanet, C., Boussau, B., Gribaldo, S., and Forterre, P. 2008. Mesophilic Crenarchaeota: proposal for a third archaeal phylum, the Thaumarchaeota. Nat. Rev. Microbiol. 6, 245-252.   DOI   ScienceOn
26 Lehtovirta-Morley, L.E., Stoecker, K., Vilcinskas, A., Prosser, J.I., and Nicol, G.W. 2011. Cultivation of an obligate acidophilic ammonia oxidizer from a nitrifying acid soil. Proc. Natl. Acad. Sci. USA 108, 15892-15897.   DOI   ScienceOn
27 Ara, I., Tsetseg, B., Daram, D., Suto, M., and Ando, K. 2011. Pseudonocardia mongoliensis sp. nov. and Pseudonocardia khuvsgulensis sp. nov., isolated from soil. Int. J. Syst. Evol. Microbiol. 61, 747-756.   DOI   ScienceOn
28 Borsodi, A.K., Knab, M., Krett, G., Makk, J., Marialigeti, K., Eross, A., and Madl-Szonyi, J. 2012. Biofilm bacterial communities inhabiting the cave walls of the buda thermal karst system, hungary. Geomicrobiol. J. 29, 611-627.   DOI
29 Cañveras, J.C., Sanchez-Moral, S., Soler, V., and Saiz-Jimenez, C. 2001. Microorganisms and microbially induced fabrics in cave walls. Geomicrobiol. J. 18, 223-240.   DOI
30 Chelius, M.K. and Moore, J.C. 2004. Molecular phylogenetic analysis of Archaea and Bacteria in wind cave, South Dakota. Geomicrobiol. J. 21, 123-134.   DOI   ScienceOn
31 Chen, Y., Wu, L., Boden, R., Hillebrand, A., Kumaresan, D., Moussard, H., Baciu, M., Lu, Y., and Colin Murrell, J. 2009. Life without light: microbial diversity and evidence of sulfur- and ammonium-based chemolithotrophy in Movile Cave. ISME J. 3, 1093-1104.   DOI   ScienceOn
32 Clark, W.B., Lane, M.D., Beem, J.E., Bragg, S.L., and Wheeler, T.T. 1985. Relative hydrophobicities of Actinomyces viscosus and Actinomyces naeslundii strains and their adsorption to saliva-treated hydroxyapatite. Infect. Immun. 47, 730-736.