DOI QR코드

DOI QR Code

Chelating and antibacterial properties of chitosan nanoparticles on dentin

  • del Carpio-Perochena, Aldo (Department of Dentistry, Endodontics and Dental Materials, Bauru Dental School, University of Sao Paulo) ;
  • Bramante, Clovis Monteiro (Department of Dentistry, Endodontics and Dental Materials, Bauru Dental School, University of Sao Paulo) ;
  • Duarte, Marco Antonio Hungaro (Department of Dentistry, Endodontics and Dental Materials, Bauru Dental School, University of Sao Paulo) ;
  • de Moura, Marcia Regina (Department of Physics and Chemistry, FEIS, Sao Paulo State University) ;
  • Aouada, Fauze Ahmad (Department of Physics and Chemistry, FEIS, Sao Paulo State University) ;
  • Kishen, Anil (Discipline of Endodontics, Faculty of Dentistry, University of Toronto)
  • Received : 2014.08.28
  • Accepted : 2015.02.07
  • Published : 2015.08.31

Abstract

Objectives: The use of chitosan nanoparticles (CNPs) in endodontics is of interest due to their antibiofilm properties. This study was to investigate the ability of bioactive CNPs to remove the smear layer and inhibit bacterial recolonization on dentin. Materials and Methods: One hundred bovine dentin sections were divided into five groups (n = 20 per group) according to the treatment. The irrigating solutions used were 2.5% sodium hypochlorite (NaOCl) for 20 min, 17% ethylenediaminetetraacetic acid (EDTA) for 3 min and 1.29 mg/mL CNPs for 3 min. The samples were irrigated with either distilled water (control), NaOCl, NaOCl-EDTA, NaOCl-EDTA-CNPs or NaOCl-CNPs. After the treatment, half of the samples (n = 50) were used to assess the chelating effect of the solutions using portable scanning electronic microscopy, while the other half (n = 50) were infected intra-orally to examine the post-treatment bacterial biofilm forming capacity. The biovolume and cellular viability of the biofilms were analysed under confocal laser scanning microscopy. The Kappa test was performed for examiner calibration, and the non-parametric Kruskal-Wallis and Dunn tests (p < 0.05) were used for comparisons among the groups. Results: The smear layer was significantly reduced in all of the groups except the control and NaOCl groups (p < 0.05). The CNPs-treated samples were able to resist biofilm formation significantly better than other treatment groups (p < 0.05). Conclusions: CNPs could be used as a final irrigant during root canal treatment with the dual benefit of removing the smear layer and inhibiting bacterial recolonization on root dentin.

Keywords

References

  1. Costerton JW, Stewart PS, Greenberg EP. Bacterial biofilms: a common cause of persistent infections. Science 1999;284:1318-1322. https://doi.org/10.1126/science.284.5418.1318
  2. Siqueira JF Jr, Paiva SS, Rocas IN. Reduction in the cultivable bacterial populations in infected root canals by a chlorhexidine-based antimicrobial protocol. J Endod 2007;33:541-547. https://doi.org/10.1016/j.joen.2007.01.008
  3. Pascon FM, Kantovitz KR, Sacramento PA, Nobredos-Santos M, Puppin-Rontani RM. Effect of sodium hypochlorite on dentin mechanical properties. A review. J Dent 2009;37:903-908. https://doi.org/10.1016/j.jdent.2009.07.004
  4. Del Carpio-Perochena AE, Bramante CM, Duarte MA, Cavenago BC, Villas-Boas MH, Graeff MS, Bernardineli N, de Andrade FB, Ordinola-Zapata R. Biofilm dissolution and cleaning ability of different irrigant solutions on intraorally infected dentin. J Endod 2011;37:1134-1138. https://doi.org/10.1016/j.joen.2011.04.013
  5. Zhang K, Kim YK, Cadenaro M, Bryan TE, Sidow SJ, Loushine RJ, Ling JQ, Pashley DH, Tay FR. Effects of different exposure times and concentrations of sodium hypochlorite/ethylenediaminetetraacetic acid on the structural integrity of mineralized dentin. J Endod 2010;36:105-109.
  6. Calt S, Serper A. Time-dependent effects of EDTA on dentin structures. J Endod 2002;28:17-19. https://doi.org/10.1097/00004770-200201000-00004
  7. Torabinejad M, Handysides R, Khademi AA, Bakland LK. Clinical implications of the smear layer in endodontics: a review. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2002;94:658-666. https://doi.org/10.1067/moe.2002.128962
  8. Violich DR, Chandler NP. The smear layer in endodontics - a review. Int Endod J 2010;43:2-15. https://doi.org/10.1111/j.1365-2591.2009.01627.x
  9. Garberoglio R, Becce C. Smear layer removal by root canal irrigants. A comparative scanning electron microscopic study. Oral Surg Oral Med Oral Pathol 1994;78:359-367. https://doi.org/10.1016/0030-4220(94)90069-8
  10. Kishen A, Sum CP, Mathew S, Lim CT. Influence of irrigation regimens on the adherence of Enterococcus faecalis to root canal dentin. J Endod 2008;34:850-854. https://doi.org/10.1016/j.joen.2008.04.006
  11. Sinha VR, Singla AK, Wadhawan S, Kaushik R, Kumria R, Bansal K, Dhawan S. Chitosan microspheres as a potential carrier for drugs. Int J Pharm 2004;274:1-33. https://doi.org/10.1016/j.ijpharm.2003.12.026
  12. Xu Z, Neoh KG, Lin CC, Kishen A. Biomimetic deposition of calcium phosphate minerals on the surface of partially demineralized dentin modified with phosphorylated chitosan. J Biomed Mater Res B Appl Biomater 2011;98:150-159.
  13. Shrestha A, Friedman S, Kishen A. Photodynamically crosslinked and chitosan-incorporated dentin collagen. J Dent Res 2011;90:1346-1351. https://doi.org/10.1177/0022034511421928
  14. No HK, Park NY, Lee SH, Meyers SP. Antibacterial activity of chitosans and chitosan oligomers with different molecular weights. Int J Food Microbiol 2002;74:65-72. https://doi.org/10.1016/S0168-1605(01)00717-6
  15. Kishen A, Shi Z, Shrestha A, Neoh KG. An investigation on the antibacterial and antibiofilm efficacy of cationic nanoparticulates for root canal disinfection. J Endod 2008;34:1515-1520. https://doi.org/10.1016/j.joen.2008.08.035
  16. Silva PV, Guedes DF, Nakadi FV, Pecora JD, Cruz-Filho AM. Chitosan: a new solution for removal of smear layer after root canal instrumentation. Int Endod J 2013;46:332-338. https://doi.org/10.1111/j.1365-2591.2012.02119.x
  17. Calamari SE, Bojanich MA, Barembaum SR, Berdicevski N, Azcurra AI. Antifungal and post-antifungal effects of chlorhexidine, fluconazole, chitosan and its combinations on Candida albicans. Med Oral Patol Oral Cir Bucal 2011;16:e23-28.
  18. Magura ME, Kafrawy AH, Brown CE Jr, Newton CW. Human saliva coronal microleakage in obturated root canals: an in vitro study. J Endod 1991;17:324-331. https://doi.org/10.1016/S0099-2399(06)81700-0
  19. Silva PV, Guedes DF, Pecora JD, da Cruz-Filho AM. Timedependent effects of chitosan on dentin structures. Braz Dent J 2012;23:357-361. https://doi.org/10.1590/S0103-64402012000400008
  20. De Moura MR, Aouada FA, Avena-Bustillos RJ, McHugh TH, Krochta JM, Mattoso LHC. Improved barrier and mechanical properties of novel hydroxypropyl methylcellulose edible films with chitosan/tripolyphosphate nanoparticles. J Food Eng 2009;92:448-453. https://doi.org/10.1016/j.jfoodeng.2008.12.015
  21. Zandim DL, Correa FO, Rossa Junior C, Sampaio JE. In vitro evaluation of the effect of natural orange juices on dentin morphology. Braz Oral Res 2008;22:176-183. https://doi.org/10.1590/S1806-83242008000200014
  22. Heydorn A, Nielsen AT, Hentzer M, Sternberg C, Givskov M, Ersboll BK, Molin S. Quantification of biofilm structures by the novel computer program COMSTAT. Microbiology 2000;146:2395-2407. https://doi.org/10.1099/00221287-146-10-2395
  23. Chavez de Paz LE. Image analysis software based on color segmentation for characterization of viability and physiological activity of biofilms. Appl Environ Microbiol 2009;75:1734-1739. https://doi.org/10.1128/AEM.02000-08
  24. Wegehaupt F, Gries D, Wiegand A, Attin T. Is bovine dentin an appropriate substitute for human dentin in erosion/abrasion tests? J Oral Rehabil 2008;35:390-394. https://doi.org/10.1111/j.1365-2842.2007.01843.x
  25. Whitehead KA, Rogers D, Colligon J, Wright C, Verran J. Use of the atomic force microscope to determine the effect of substratum surface topography on the ease of bacterial removal. Colloids Surf B Biointerfaces 2006;51:44-53. https://doi.org/10.1016/j.colsurfb.2006.05.003
  26. Lopes MB, Sinhoreti MA, Gonini Junior A, Consani S, McCabe JF. Comparative study of tubular diameter and quantity for human and bovine dentin at different depths. Braz Dent J 2009;20:279-283. https://doi.org/10.1590/S0103-64402009000400003
  27. Del Carpio-Perochena A, Bramante CM, Hungaro Duarte MA, de Andrade FB, Cavenago BC, Villas-Boas MH, Ordinola-Zapata R, Amoroso-Silva P. Application of laser scanning microscopy for the analysis of oral biofilm dissolution by different endodontic irrigants. Dent Res J (Isfahan) 2014;11:442-447.
  28. Ordinola-Zapata R, Bramante CM, Cavenago B, Graeff MS, Gomes de Moraes I, Marciano M, Duarte MA. Antimicrobial effect of endodontic solutions used as final irrigants on a dentin biofilm model. Int Endod J 2012;45:162-168. https://doi.org/10.1111/j.1365-2591.2011.01959.x
  29. Inoue K, Yoshizuka K, Ohto K. Adsorptive separation of some metal ions by complexing agent types of chemically modified chitosan. Anal Chim Acta 1999;388:209-218. https://doi.org/10.1016/S0003-2670(99)00090-2
  30. Bassi R, Prasher SO, Simpson BK. Effects of organic acids on the adsorption of heavy metal ions by chitosan flakes. J Environ Sci Health 1999;34:289-294.
  31. Blair HS, Ho TC. Studies in the adsorption and diffusion of ions in chitosan. J Chem Technol Biotechnol 1981;31:6-10. https://doi.org/10.1002/jctb.280310103
  32. Vold IMN, Varum KM, Guibal E, Smidsrod O. Binding of ions to chitosan-selectivity studies. Carbohydr Polym 2003;54:471-477. https://doi.org/10.1016/j.carbpol.2003.07.001
  33. Pimenta JA, Zaparolli D, Pecora JD, Cruz-Filho AM. Chitosan: effect of a new chelating agent on the microhardness of root dentin. Braz Dent J 2012;23:212-217. https://doi.org/10.1590/S0103-64402012000300005
  34. Costerton JW, Cheng KJ, Geesey GG, Ladd TI, Nickel JC, Dasgupta M, Marrie TJ. Bacterial biofilms in nature and disease. Annu Rev Microbiol 1987;41:435-464. https://doi.org/10.1146/annurev.mi.41.100187.002251
  35. Wang QQ, Zhang CF, Chu CH, Zhu XF. Prevalence of Enterococcus faecalis in saliva and filled root canals of teeth associated with apical periodontitis. Int J Oral Sci 2012;4:19-23. https://doi.org/10.1038/ijos.2012.17
  36. Saunders WP, Saunders EM. Coronal leakage as a cause of failure in root-canal therapy: a review. Endod Dent Traumatol 1994;10:105-108. https://doi.org/10.1111/j.1600-9657.1994.tb00533.x
  37. Hasan NA, Young BA, Minard-Smith AT, Saeed K, Li H, Heizer EM, McMillan NJ, Isom R, Abdullah AS, Bornman DM, Faith SA, Choi SY, Dickens ML, Cebula TA, Colwell RR. Microbial community profiling of human saliva using shotgun metagenomic sequencing. PLoS One 2014;9:e97699. https://doi.org/10.1371/journal.pone.0097699
  38. Madison S, Swanson K, Chiles SA. An evaluation of coronal microleakage in endodontically treated teeth. Part II. Sealer types. J Endod 1987;13:109-112. https://doi.org/10.1016/S0099-2399(87)80175-9
  39. Madison S, Wilcox LR. An evaluation of coronal microleakage in endodontically treated teeth. Part III. In vivo study. J Endod 1988;14:455-458. https://doi.org/10.1016/S0099-2399(88)80135-3
  40. Gray GW, Wilkinson SG. The effect of ethylenediaminetetra-acetic acid on cell walls of some gramnegative bacteria. J Gen Microbiol 1965;39:385-399. https://doi.org/10.1099/00221287-39-3-385
  41. Rabea EI, Badawy ME, Stevens CV, Smagghe G, Steurbaut W. Chitosan as antimicrobial agent: applications and mode of action. Biomacromolecules 2003;4:1457-1465. https://doi.org/10.1021/bm034130m
  42. Young DH, Kohle H, Kauss H. Effect of chitosan on membrane-permeability of suspension-cultured glycine-max and phaseolus-vulgaris cells. Plant Physiol 1982;70:1449-1454. https://doi.org/10.1104/pp.70.5.1449
  43. Persadmehr A, Torneck CD, Cvitkovitch DG, Pinto V, Talior I, Kazembe M, Shrestha S, McCulloch CA, Kishen A. Bioactive chitosan nanoparticles and photodynamic therapy inhibit collagen degradation in vitro. J Endod 2014;40:703-709. https://doi.org/10.1016/j.joen.2013.11.004
  44. Grande NM, Plotino G, Falanga A, Pomponi M, Somma F. Interaction between EDTA and sodium hypochlorite: a nuclear magnetic resonance analysis. J Endod 2006;32:460-464. https://doi.org/10.1016/j.joen.2005.08.007
  45. Yoo SH, Lee JS, Park SY, Kim YS, Chang PS, Lee HG. Effects of selective oxidation of chitosan on physical and biological properties. Int J Biol Macromol 2005;35:27-31. https://doi.org/10.1016/j.ijbiomac.2004.11.004

Cited by

  1. Organic Nanomaterialsand Their Applications in theTreatment of Oral Diseases vol.21, pp.2, 2016, https://doi.org/10.3390/molecules21020207
  2. Analysis of the shelf life of chitosan stored in different types of packaging, using colorimetry and dentin microhardness vol.42, pp.2, 2017, https://doi.org/10.5395/rde.2017.42.2.87
  3. In Vitro Antimicrobial Effect of Bioadhesive Oral Membrane with Chlorhexidine Gel vol.29, pp.4, 2018, https://doi.org/10.1590/0103-6440201801743
  4. How to improve root canal filling in teeth subjected to radiation therapy for cancer vol.32, pp.0, 2018, https://doi.org/10.1590/1807-3107bor-2018.vol32.0121
  5. Assessment of toxicity and oxidative DNA damage of sodium hypochlorite, chitosan and propolis on fibroblast cells vol.32, pp.0, 2018, https://doi.org/10.1590/1807-3107bor-2018.vol32.0119
  6. study pp.1502-3850, 2018, https://doi.org/10.1080/00016357.2018.1498125
  7. The effect of combined use of chitosan and PIPS on push-out bond strength of root canal filling materials vol.30, pp.18, 2016, https://doi.org/10.1080/01694243.2016.1173392
  8. Assessment of the Amount of Calcium Ions Released after the use of Different Chelating Agents and Agitation Protocols vol.11, pp.None, 2015, https://doi.org/10.2174/1874210601711010133
  9. Does nanobiotechnology create new tools to combat microorganisms? vol.6, pp.2, 2015, https://doi.org/10.1515/ntrev-2016-0042
  10. Does nanobiotechnology create new tools to combat microorganisms? vol.6, pp.2, 2015, https://doi.org/10.1515/ntrev-2016-0042
  11. Recent developments in the use of nanoparticles for treatment of biofilms vol.6, pp.5, 2015, https://doi.org/10.1515/ntrev-2016-0054
  12. Recent developments in the use of nanoparticles for treatment of biofilms vol.6, pp.5, 2015, https://doi.org/10.1515/ntrev-2016-0054
  13. Application of Antimicrobial Nanoparticles in Dentistry vol.24, pp.6, 2015, https://doi.org/10.3390/molecules24061033
  14. Comparative effects of final canal irrigation with chitosan and EDTA vol.28, pp.None, 2020, https://doi.org/10.1590/1678-7757-2019-0005
  15. A chitosan-based irrigant improves the dislocation resistance of a mineral trioxide aggregate-resin hybrid root canal sealer vol.24, pp.1, 2020, https://doi.org/10.1007/s00784-019-02916-x
  16. Time-Dependent Effect of Chitosan Nanoparticles as Final Irrigation on the Apical Sealing Ability and Push-Out Bond Strength of Root Canal Obturation vol.2020, pp.None, 2015, https://doi.org/10.1155/2020/8887593
  17. The Effect of Chitosan Nanoparticle as A Final Irrigation Solution on The Smear Layer Removal, Micro-hardness and Surface Roughness of Root Canal Dentin vol.14, pp.None, 2015, https://doi.org/10.2174/1874210602014010019
  18. Detection, treatment and prevention of endodontic biofilm infections: what’s new in 2020? vol.46, pp.2, 2015, https://doi.org/10.1080/1040841x.2020.1739622
  19. Antibacterial property of chitosan against E. faecalis standard strain and clinical isolates vol.39, pp.3, 2015, https://doi.org/10.4012/dmj.2018-343
  20. Chelation capability of chitosan and chitosan derivatives: Recent developments in sustainable corrosion inhibition and metal decontamination applications vol.4, pp.None, 2021, https://doi.org/10.1016/j.crgsc.2021.100184
  21. The Potential Translational Applications of Nanoparticles in Endodontics vol.16, pp.None, 2015, https://doi.org/10.2147/ijn.s293518
  22. Enhanced visualization of the root canal morphology using a chitosan-based endo-radiopaque solution vol.46, pp.3, 2015, https://doi.org/10.5395/rde.2021.46.e33
  23. Evaluation of Anti-Biofilm Activity of Mouthrinses Containing Tannic Acid or Chitosan on Dentin In Situ vol.26, pp.5, 2015, https://doi.org/10.3390/molecules26051351
  24. Assessment of Antimicrobial Efficacy of Nano Chitosan, Chlorhexidine, Chlorhexidine/Nano Chitosan Combination versus Sodium Hypochlorite Irrigation in Patients with Necrotic Mandibular Premolars: A Ra vol.9, pp.4, 2015, https://doi.org/10.3889/oamjms.2021.7070
  25. Engineering Polymeric Nanosystems against Oral Diseases vol.26, pp.8, 2015, https://doi.org/10.3390/molecules26082229
  26. Carbohydrate-containing nanoparticles as vaccine adjuvants vol.20, pp.7, 2015, https://doi.org/10.1080/14760584.2021.1939688
  27. Nanomaterials Application in Endodontics vol.14, pp.18, 2015, https://doi.org/10.3390/ma14185296
  28. Nanostructures as Targeted Therapeutics for Combating Oral Bacterial Diseases vol.9, pp.10, 2021, https://doi.org/10.3390/biomedicines9101435
  29. Effect of the Incorporation of Chitosan and TiO2 Nanoparticles on the Shear Bond Strength of an Orthodontic Adhesive: An In Vitro Study vol.12, pp.2, 2021, https://doi.org/10.1177/23202068211015447
  30. Chitosan Enhances the Anti-Biofilm Activity of Biodentine against an Interkingdom Biofilm Model vol.10, pp.11, 2015, https://doi.org/10.3390/antibiotics10111317
  31. Physicochemical and biological properties of a biostimulating membrane (BBio) for pulp capping vol.308, pp.no.pb, 2015, https://doi.org/10.1016/j.matlet.2021.131186