• 제목/요약/키워드: bacterial activity

검색결과 2,209건 처리시간 0.028초

Prospecting endophytic colonization in Waltheria indica for biosynthesis of silver nanoparticles and its antimicrobial activity

  • Nirmala, C.;Sridevi, M.
    • Advances in nano research
    • /
    • 제13권4호
    • /
    • pp.325-339
    • /
    • 2022
  • Endophytes ascertain a symbiotic relationship with plants as promoters of growth, defense mechanism etc. This study is a first report to screen the endophytic population in Waltheria indica, a tropical medicinal plant. 5 bacterial and 3 fungal strains in leaves, 3 bacterial and 1 yeast species in stems were differentiated morphologically and identified by biochemical and molecular methods. The phylogenetic tree of the isolated endophytes was constructed using MEGA X. Silver nanoparticles were biosynthesized from a rare endophytic bacterium Cupriavidus metallidurans isolated from the leaf of W. indica. The formation of silver nanoparticles was confirmed by UV-Visible spectrophotometer that evidenced a strong absorption band at 408.5 nm of UV-Visible range with crystalline nature and average particle size of 16.4 nm by Particle size analyzer. The Fourier Transform Infra-Red spectrum displayed the presence of various functional groups that stabilized the nanoparticles. X-ray diffraction peaks were conferred to face centered cubic structure. Transmission Electron Microscope and Scanning Electron Microscope revealed the spherical-shaped, polycrystalline nature with the presence of elemental silver analyzed by Energy Dispersive of X-Ray spectrum. Selected area electron diffraction also confirmed the orientation of AgNPs at 111, 200, 220, 311 planes similar to X-ray diffraction analysis. The synthesized nanoparticles are evaluated for antimicrobial activity against 7 bacterial and 3 fungal pathogens. A good zone of inhibition was observed against pathogenic bacteria than fungal pathogens. Thus the study could hold a key aspect in drug discovery research and other pharmacological conducts of human clinical conditions.

Enterobacter cloacae MG82에 의한Triphenylmethane흡수 특성과 탈색효소의 세포내 위치

  • 정민선;곽순전;김병홍;정영건;강사욱;민경희
    • 한국미생물·생명공학회지
    • /
    • 제25권1호
    • /
    • pp.37-43
    • /
    • 1997
  • Triphenylmethane was decolorized rapidly by enterbacter cloacae MG 82 at initial reaction time. The spheroplast showed higher activity of triphenylmentane decolorization than that of intact cell suspension. The outer part of the bacterial cell envelope and the peptidoglycan are important for the function of transport barrier of triphenylmethane. In intact cell, decolorization activity was higher at 37$\circ $C than at $\circ $C, indicating that triphenylmethane decolorization is due to the enzyme reaction. Culture filtrate showed no decolorization activity, while cell-free extract appeared high activity of 1.45 units, clearly showing that decolorization activity was due to the cell-free extract. Comparing decolorization activities of cell fractions, it was found that decolorization activity was located at the compartment of cytoplasmic membrane. The enzyme activity was also shown to be Mg$^{++}$-dependent. The optimum pH and temperature of enzyme activity were 7.0 and 50$\circ $C, respectively. The thermostability of this enzyme at 35$\circ $C was kept to 58% for 3 hours.

  • PDF

Phytase Properties from Bifidobacterium animalis

  • Oh, Nam-Soon;Lee, Byong-Hoon
    • Food Science and Biotechnology
    • /
    • 제16권4호
    • /
    • pp.580-583
    • /
    • 2007
  • Phytase activity was examined with various bifidobacterial strains cultured statically in MRS broth at $37^{\circ}C$ for 48 hr. Seven Bifidobacterium species showed mostly an intracellular phytase activity, though their specific activities were very low. The highest specific activity was found in Bifidobacterium animalis B33 strain, among 7 bifidobacteria tested. The specific activity was highest during the exponential growth phase. Carbohydrates and the concentration of phosphorus sources had an effect on the phytase activity and bacterial growth. Glucose was the most favorable carbohydrate for the phytase activity. Phytate inhibited the cell growth, and phytase activity decreased with increase of phytate concentration. The phytase activity was even higher in the static microaerophilic growth than that in anaerobic state, despite the stimulated growth in anaerobic growth. The optimal pH ranges were comparatively broad, but the optimal temperatures were $50^{\circ}C$ for all tested strains. The phytase activity was most active at pH 6.5 and $50^{\circ}C$ for B. animalis B33 strain.

파로호 수중생태계에서의 미생물 분포 및 활성도 (Distributions and heterotrophic actibities of bacteria in Lake Paro)

  • 안태석;이동훈
    • 미생물학회지
    • /
    • 제26권3호
    • /
    • pp.230-236
    • /
    • 1988
  • 최근 평화의 댐 건설에 따른 영향으로 다량의 물을 방류하여 미생물 생태계의 큰 변화가 예상되는 파로호에서 미생물 분포 및 활성도에 관하여 1987년 1월부터 11월까지 격월로 조사, 연구하였다. 총 세균수는 $0.3\times 10^{5}-13.1\times10 ^{5}$cells/ml의 비교적 낮은 값을 나타내었으며 3월에 급격한 증가를 보여 $10.7\times 10^{5}-13.1\times10 ^{5}$ cells/ml 의 최고치를 나타애었다. 종속영양세균은 $1.9\times 10^{3}$ - $3.1\times 10^{4}$CFUs/m의 변화를 갖으며 총 세균수의 변화와 유사한 경향을 나타내었다. Alpha-및 beta-glucosidase를 분비하는 세균의 비율은 지역적인 차이보다는 계절적인 변화가 우세하였으며 Phosphatase를 분비하는 세균의 비율은 22.7-63.0%로 최고치를 나타내었다. 전자전달계 활성도는 480-1696${\mu}gO_{2}$/l/day의 변화를 갖으며 지역적으로 유입수에서, 계절적으로 여름에 높았다. 유기연산염의 분해율은 0.4-9.1%/h로 다른 댐보다 낮았으며, 수온이 상승함에 따라 분해율이 커졌으며 Phosphatase를 분비하는 세균의 비율변화와 관계가 있음을 알 수 있였다. 종속영양세균의 생리적 활성도는 여름의 최고치가 8.2%/h로 계절적으로 DOM 증가 에 따른 활성도의 증가가 관찰되었다. 파로호의 급격한 변화는 세균류의 개체수 변화에 큰 영향을 미쳤으냐, 활성도 및 특정호소 분비세균비율에는 영향을 주지 못 하였다. 활성도 및 특정효소 분비비율은 계절적 소장이 뚜렷하여, 식물성플라크톤의 증식과 일차 생산력과의 밀접한 관계를 보였다.

  • PDF

장수풍뎅이 유충의 장내 미생물을 이용한 다양한 식물 균류병의 생물적 방제 및 생장촉진 (Plant Growth Promotion and Biocontrol Potential of Various Phytopathogenic Fungi Using Gut Microbes of Allomyrina dichotoma Larva)

  • 김준영;김병섭
    • 식물병연구
    • /
    • 제26권4호
    • /
    • pp.210-221
    • /
    • 2020
  • 곤충은 장내에 서식하고 있는 미생물과 상호작용을 통해 공생하는 것으로 알려져 있으며, 이러한 공생자는 공진화를 통하여 극한 환경에서도 서식을 가능하게 한다. 이러한 관점에서 토양 속에서 부엽토와 식물 잔재를 먹고 사는 장수풍뎅이 유충의 장내에 존재하는 공생자는 식물병원균을 방제하는 데 유용한 미생물이 존재할 것으로 생각된다. 따라서, 식물병원균에 대해 활성을 갖는 유용 미생물 10종을 장수풍뎅이 유충의 소화기관 전장, 중장, 후장으로부터 분리하였다. 분리된 10종의 유용 미생물은 유묘 검정을 통하여 토마토 잿빛곰팡이병, 배추 뿌리혹병, 고추 탄저병, 고추 역병에 대하여 강력한 항균 활성을 확인하였다. 10종의 항균활성 미생물은 형태적 특성과 16s rRNA gene 분석으로 Bacillus속 4종, Paenibacillus속 3종 및 Streptomyces속 3종으로 동정되었다. 유용 미생물은 인산 가용화, indole-3-acetic acid, siderophore 생성 활성이 우수하며 진균외막가수분해 효소인 β-1,3-glucanase, pretease 활성을 보였다. 10종의 유용 미생물 중, DM152 균주는 토마토와 고추 식물체의 모든 기관에서 생장을 촉진시켰다. 따라서, 장수풍뎅이 유충의 소화기관으로부터 분리된 10종의 장내 미생물은 생물학적 방제제 및 생물비료의 활용 가능성을 나타내었다.

Effects of Iron-Reducing Bacteria on Carbon Steel Corrosion Induced by Thermophilic Sulfate-Reducing Consortia

  • Valencia-Cantero, Eduardo;Pena-Cabriales, Juan Jose
    • Journal of Microbiology and Biotechnology
    • /
    • 제24권2호
    • /
    • pp.280-286
    • /
    • 2014
  • Four thermophilic bacterial species, including the iron-reducing bacterium Geobacillus sp. G2 and the sulfate-reducing bacterium Desulfotomaculum sp. SRB-M, were employed to integrate a bacterial consortium. A second consortium was integrated with the same bacteria, except for Geobacillus sp. G2. Carbon steel coupons were subjected to batch cultures of both consortia. The corrosion induced by the complete consortium was 10 times higher than that induced by the second consortium, and the ferrous ion concentration was consistently higher in iron-reducing consortia. Scanning electronic microscopy analysis of the carbon steel surface showed mineral films colonized by bacteria. The complete consortium caused profuse fracturing of the mineral film, whereas the non-iron-reducing consortium did not generate fractures. These data show that the iron-reducing activity of Geobacillus sp. G2 promotes fracturing of mineral films, thereby increasing steel corrosion.

Bifidobacterium longum HY8001의 섭취가 사람의 장내세균층 및 장내세균 효소에 미치는 영향 (Effect of Bifidobacterium longum HY8001 Administration on Human Fecal Bacterial Enzymes and Microflora)

  • 이완규;이상명;배형석;백영진
    • 한국미생물·생명공학회지
    • /
    • 제27권4호
    • /
    • pp.267-272
    • /
    • 1999
  • The effects of Bifidobacterium longum HY8001 supplement intake on the fecal microflora and fecal bacterial enzyme activity were studied in ten healthy human volunteers, before, during and after intake (respectively for 3 weeks). During intake of B. longum HY8001 supplement, fecal, $\beta$-glucuronidase and nitroreductase activities significantly decreased 44.6%(p<0.005) and 32.3%(p<0.01), respectively. Although numbers of major bacterial groups of fecal microflora were not affected by B. longum HY8001 intake for 3 weeks, the number of Bifidobacterium was significantly increased (p<0.05). This result indicates that intake of B. longum HY8001 might be potentially beneficial for the prevention and inhibition of colon cancer and improvement of human intestinal microflora composition.

  • PDF

Draft Genome Sequence of a Chitinase-producing Biocontrol Bacterium Serratia sp. C-1

  • Park, Seur Kee;Kim, Young Cheol
    • 식물병연구
    • /
    • 제21권3호
    • /
    • pp.222-226
    • /
    • 2015
  • The chitinase-producing bacterial strain C-1 is one of the key chitinase-producing biocontrol agents used for effective bioformulations for biological control. These bioformulations are mixed cultures of various chitinolytic bacteria. However, the precise identification, biocontrol activity, and the underlying mechanisms of the strain C-1 have not been investigated so far. Therefore, we evaluated in planta biocontrol efficacies of C-1 and determined the draft genome sequence of the strain in this study. The bacterial C-1 strain was identified as a novel Serratia sp. by a phylogenic analysis of its 16S rRNA sequence. The Serratia sp. C-1 bacterial cultures showed strong in planta biocontrol efficacies against some major phytopathogenic fungal diseases. The draft genome sequence of Serratia sp. C-1 indicated that the C-1 strain is a novel strain harboring a subset of genes that may be involved in its biocontrol activities.

Improvement of Biological Control against Bacterial Wilt by the Combination of Biocontrol Agents with Different Mechanisms of Action

  • Kim, Ji-Tae;Kim, Shin-Duk
    • Journal of Applied Biological Chemistry
    • /
    • 제50권3호
    • /
    • pp.136-143
    • /
    • 2007
  • Despite the increased interests in biological control of soilborne diesease for environmental protection, biological control of bacterial wilt caused by Ralstonia solanacearum have not provided consistent or satisfying results. To enhance the control efficacy and reducing the inconsistency and variability, combinations of specific strains of microorganisms, each having a specific mechanism of control, were applied in this study. More than 30 microorganisms able to reduce the activity of pathogen by specific mechanism of action were identified and tested for their disease suppressive effects. After in vitro compatibility examinations, 21 individual strains and 15 combinations were tested in the greenhouse. Results indicated three-way combinations of different mode of control, TS3-7+A253-16+SKU78 and TS1-5+A100-1+SKU78, enhanced disease suppression by 70%, as compared to 30-50% reduction for their individual treatments. This work suggests that combining multiple traits antagonizing the pathogen improve efficacy of the biocontrol agents against Ralstonia solanacearum.

Identification of an antagonistic bacteria and its antibiotic substance against Colletotrichm orbiculare causing anthracnose on cucumber

  • Chae, Hee-Jung;Moon, Surk-Sik;Ahn, Jong-Woong;Chung, Young-Ryun
    • 한국식물병리학회:학술대회논문집
    • /
    • 한국식물병리학회 2003년도 정기총회 및 추계학술발표회
    • /
    • pp.102.1-102
    • /
    • 2003
  • A bacterial strain YC4963 with antifungal activity against Colletotrichum orbiculare, a causal organism of cucumber anthracnose was isolated from the rhizosphere soil of Siegesbeckia pubescens (Siegesbeckia pubescens Makino;Family:Compositae) in Korea. Based on physiological and biochemical characteristics and 16S ribosomal DNA sequence analysis, the bacterial strain was identified as Pseudomonu aureofaciens. The bacteria also inhibited mycelial growth of several plant fungal pathogens such as Botrytis cinerea, Fusarium oxysporum and Rhizoctonia solani on PDA and 0.1 TSA media. The antibiotic activity was found from the culture filtrate of TSB(tryptic soy broth) and its active compounds were quantitatively bound to XAD adsorber resin. The antibiotic spectrum was broad and growth of C. orbiculare and F. oxysporum, B. cinerea were inhibited at very low concentration. The chemical data from various chromatographic procedures showed that active fraction consisted of at least two phenazine derivatives. However, the metabolites had no inhibitory effect on Pythium ultimum which was reported to be sensitive to phenazine antibiotics. The compounds responsible for the activity are now under investigation.

  • PDF