Browse > Article
http://dx.doi.org/10.5423/RPD.2020.26.4.210

Plant Growth Promotion and Biocontrol Potential of Various Phytopathogenic Fungi Using Gut Microbes of Allomyrina dichotoma Larva  

Kim, Joon-Young (Department of Plant Science, Gangneung-Wonju National University)
Kim, Byung-Sup (Department of Plant Science, Gangneung-Wonju National University)
Publication Information
Research in Plant Disease / v.26, no.4, 2020 , pp. 210-221 More about this Journal
Abstract
This research was executed to select beneficial antagonists from digestive organ of Allomyrina dichotoma larva that can be put on environment friendly control against phytopathogenic fungi. We screened 38 bacterial strains inhibiting mycelial growth against eight plant pathogens through dual culture assay. The 10 strains among 38 bacterial strains were selected as beneficial microbes showing antifungal activity against Botrytis cinerea, Plasmodiophora brassicae, Colletotrichum acutatum and Phytophthora capsici through under greenhouse pot trials. The 10 bacterial strains that shown strongest antifungal activity were classified into 3 genera and 10 species, and identified as the genus Bacillus (DM146, DM152, DH2, and DH16), Paenibacillus (DF30, DH14, and DM142) and Streptomyces (DF137, DM48, and DH92) by morphological characteristics and 16s rRNA gene sequence. The 10 bacterial strains had solubilizing activity of insoluble phosphates, production of IAA (indole-3-acetic acid), β-1,3-glucanase and protease. Among the 10 bacterial strains, DM152 strain was produced significant enhancement of all growth parameters of chili pepper and tomato seedlings under greenhouse condition. Thus, this study demonstrated that gut microbes of Allomyrina dichotoma larva will be useful as a potential biocontrol agent against plant pathogens and biofertilizer.
Keywords
Allomyrina dichotoma larva; Biocontrol potential; Gut microbes; Plant growth promotion;
Citations & Related Records
Times Cited By KSCI : 7  (Citation Analysis)
연도 인용수 순위
1 Andrews, J. H. 1992. Biological control in the phyllosphere. Ann. Rev. Phytopathol. 30: 603-635.   DOI
2 Huo, Z., Yang, X., Raza, W., Huang, Q., Xu, Y. and Shen, Q. 2010. Investigation of factors influencing spore germination of Paenibacillus polymyxa ACCC10252 and SQR-21. Appl. Microbiol. Biotechnol. 87: 527-536.   DOI
3 Kato, K., Kozaki, S. and Sakuranaga, M. 1998. Degradation of lignin compounds by bacteria from termite guts. Biotechnol. Lett. 20: 459-462.   DOI
4 Kavamura, V. N., Santos, S. N., Silva, J. L., Parma, M. M., Avila, L. A., Visconti, A. et al. 2013. Screening of Brazilian cacti rhizobacteria for plant growth promotion under drought. Microbiol. Res. 168: 183-191.   DOI
5 Kumar, R. S., Ayyadurai, N., Pandiaraja, P., Reddy, A. V., Venkateswarlu, Y., Prakash, O. et al. 2005. Characterization of antifungal metabolite produced by a new strain Pseudomonas aeruginosa PUPa3 that exhibits broad-spectrum antifungal activity and biofertilizing traits. J. Appl. Microbiol. 98: 145-154.   DOI
6 Kupferschmied, P., Maurhofer, M. and Keel, C. 2013. Promise for plant pest control: root-associated pseudomonads with insecticidal activities. Front. Plant Sci. 4: 287.   DOI
7 Lacey, L. A. and Georgis, R. 2012. Entomopathogenic nematodes for control of insect pests above and below ground with comments on commercial production. J. Nematol. 44: 218-225.
8 Lambrecht, M., Okon, Y., Vande Broek, A. and Vanderleyden, J. 2000. Indole-3-acetic acid: a reciprocal signalling molecule in bacteria-plant interactions. Trends Microbiol. 8: 298-300.   DOI
9 Lee, J. P., Lee, S.-W., Kim, C. S., Son, J. H., Song, J. H., Lee, K. Y. et al. 2006. Evaluation of formulations of Bacillus licheniformis for the biological control of tomato gray mold caused by Botrytis cinerea. Biol. Control 37: 329-337.   DOI
10 Nishiguchi, M. K., Doukakis, P., Egan, M., Kizirian, D., Phillips, A., Prendini, L. et al. 2002. DNA isolation procedures. In: Methods and Tools in Biosciences and Medicine: Techniques in Molecular Systematics and Evolution, eds. by by R. DeSalle, G. Giribet and W. Wheeler, pp. 249-287. Birkhauser Verlag, Basel, Switzerland.
11 Ntushelo, K., Ledwaba, L. K., Rauwane, M. E., Adebo, O. A. and Njobeh, P. B. 2019. The mode of action of Bacillus species against Fusarium graminearum, tools for investigation, and future prospects. Toxins 11: 606.   DOI
12 Park, D.-S., Oh, H.-W., Bae, K. S., Kim, H., Heo, S.-Y., Kim, N. et al. 2007. Screening of bacteria producing lipase from insect gut: isolation and characterization of a strain, Burkholderia sp. HY-10 producing lipase. Korean J. Appl. Entomol. 46: 131-139. (In Korean)   DOI
13 Rajagopal, R. 2009. Beneficial interactions between insects and gut bacteria. Indian J. Microbiol. 49: 114-119.   DOI
14 Rajan, S. S. S., Watkinson, J. H. and Sinclair, A. G. 1996. Phosphate rocks for direct application to soils. Adv. Agron. 57: 77-159.   DOI
15 Ruffner, B., Péchy-Tarr, M., Ryffel, F., Hoegger, P., Obrist, C., Rindlisbacher, A. et al. 2013. Oral insecticidal activity of plant-associated pseudomonads. Environ. Microbiol. 15: 751-763.   DOI
16 Sanahuja, G., Banakar, R., Twyman, R. M., Capell, T. and Christou, P. 2011. Bacillus thuringiensis: a century of research, development and commercial applications. Plant Biotechnol. J. 9: 283-300.   DOI
17 Schwyn, B. and Neilands, J. B. 1997. Universal chemical assay for the detection and determination of siderophores. Anal. Biochem. 160: 47-56.   DOI
18 Shao, Y., Chen, B., Sun, C., Ishida, K., Hertweck, C. and Boland, W. 2017. Symbiont-derived antimicrobials contribute to the control of the lepidopteran gut microbiota. Cell Chem. Biol. 24: 66-75.   DOI
19 Lee, H.-W., Ahn, J.-H., Kim, M., Weon, H.-Y., Song, J., Lee, S.-J. et al. 2013. Diversity and antimicrobial activity of actinomycetes from fecal sample of rhinoceros beetle larvae. Korean J. Microbiol. 49: 156-164. (In Korean)   DOI
20 Han, J.-H., Park, G.-C., Kim, J.-O. and Kim, K. S. 2015. Biological control of Fusarium stalk rot of maize using Bacillus spp. Res. Plant Dis. 21: 280-289. (In Korean)   DOI
21 Li, Q., Ning, P., Zheng, L., Huang, J., Li, G. and Hsiang, T. 2012. Effects of volatile substances of Streptomyces globisporus JK-1 on control of Botrytis cinerea on tomato fruit. Biol. Control 61: 113-120.   DOI
22 McSpadden Gardener, B. B. 2004. Ecology of Bacillus and Paenibacillus spp. in agricultural systems. Phytopathology 94: 1252-1258.   DOI
23 Minaxi, L. N., Yadav, R. C. and Saxena, J. 2012. Characterization of multifaceted Bacillus sp. RM-2 for its use as plant growth promoting bioinoculant for crops grown in semi arid deserts. Appl. Soil Ecol. 59: 124-135.   DOI
24 Moon, C. W., Kim, K. K., Whang, K. S., Seo, M. J., Youn, Y. N. and Yu, Y. M. 2011. Characteristics of Enterobacteria from Harmonia axyridis and effects of Staphylococcus spp. on development of H. axyridis. Korean J. Appl. Entomol. 50: 157-165. (In Korean)   DOI
25 Nam, H.-S., Yang, H.-J., Oh, B. J., Anderson, A. J. and Kim, Y. C. 2016. Biological control potential of Bacillus amyloliquefaciens KB3 isolated from the feces of Allomyrina dichotoma larvae. Plant Pathol. J. 32: 273-280.   DOI
26 Nicholson, W. L., Munakata, N., Horneck, G., Melosh, H. J. and Setlow, P. 2000. Resistance of Bacillus endospores to extreme terrestrial and extraterrestrial environments. Microbiol. Mol. Biol. Rev. 64: 548-572.   DOI
27 Torabi, A., Bonjar, G. H. S., Abdolshahi, R., Pournamdari, M., Saadoun, I. and Barka, E. A. 2019. Biological control of Paecilomyces formosus, the causal agent of dieback and canker diseases of pistachio by two strains of Streptomyces misionensis. Biol. Control 137: 104029.   DOI
28 Son, J.-S., Sumayo, M., Hwang, Y.-J., Kim, B.-S. and Ghim, S.-Y. 2014. Screening of plant growth-promoting rhizobacteria as elicitor of systemic resistance against gray leaf spot disease in pepper. Appl. Soil Ecol. 73: 1-8.   DOI
29 Swain, M. R. and Ray, R. C. 2008. Optimization of cultural conditions and their statistical interpretation for production of indole-3-acetic acid by Bacillus subtilis CM5 using cassava fibrous residue. J. Sci. Ind. Res. 67: 622-628.
30 Swain, M. R. and Ray, R. C. 2009. Biocontrol and other beneficial activities of Bacillus subtilis isolated from cowdung microflora. Microbiol. Res. 164: 121-130.   DOI
31 Vessey, J. K. 2003. Plant growth promoting rhizobacteria as biofertilizers. Plant Soil. 255: 571-586.   DOI
32 Watanabe, H., Noda, H., Tokuda, G. and Lo, N. 1998. A cellulase gene of termite origin. Nature 394: 330-331.   DOI
33 Whipps, J. M. and McQuilken, M. P. 2009. Biological control agents in plant disease control. In: Disease Control in Crops: Biological and Environmentally Friendly Approaches, ed. by D. Walters, pp. 27-61. Wiley-Blackwell, Hoboken, NJ, USA.
34 Xu, S. J. and Kim, B. S. 2014. Biocontrol of Fusarium crown and root rot and promotion of growth of tomato by Paenibacillus strains isolated from soil. Mycobiology 42: 158-166.   DOI
35 Xu, S. J., Park, D. H., Kim, J.-Y. and Kim, B.-S. 2016. Biological control of gray mold and growth promotion of tomato using Bacillus spp. isolated from soil. Trop. Plant Pathol. 41: 169-176.   DOI
36 Chung, M. Y., Kwon, E.-Y., Hwang, J.-S., Goo, T.-W. and Yun, E.-Y. 2013. Establishment of food processing methods for larvae of Allomyrina dichotoma, Korean horn beetle. J. Life Sci. 23: 426-431. (In Korean)   DOI
37 Zaidi, S., Usmani, S., Singh, B. R. and Musarrat, J. 2006. Significance of Bacillus subtilis strain SJ-101 as a bioinoculant for concurrent plant growth promotion and nickel accumulation in Brassica juncea. Chemosphere 64: 991-997.   DOI
38 Zeriouh, H., Romero, D., Garcia-Gutierrez, L., Cazorla, F. M., de Vicente, A. and Perez-Garcia, A. 2011. The iturin-like lipopeptides are essential components in the biological control arsenal of Bacillus subtilis against bacterial diseases of cucurbits. Mol. Plant-Microbe Interact. 24: 1540-1552.   DOI
39 Chen, J., Abawi, G. S. and Zuckerman, B. M. 2000. Efficacy of Bacillus thuringiensis, Paecilomyces marquandii, and Streptomyces costaricanus with and without organic amendments against Meloidogyne hapla infecting lettuce. J. Nematol. 32: 70-77.
40 Choi, Y.-H., Lee, K.-Y., Yang, K.-M., Jeong, Y.-M. and Seo, J.-S. 2006. Effect of larva extract of Allomyrina dichotoma on carbon tetrachloride-induced hepatotoxicity in mice. J. Korean Soc. Food Sci. Nutr. 35: 1349-1355. (In Korean)   DOI
41 De Weger, L. A., van Boxtel, R., van der Burg, B., Gruters, R. A., Geels, F. P., Schippers, B. et al. 1986. Siderophores and outer membrane proteins of antagonistic, plant-growth-stimulating, rootcolonizing Pseudomonas spp. J. Bacteriol. 165: 585-594.   DOI
42 Dharni, S., Alam, M., Kalani, K., Khaliq, A., Samad, A., Srivastava, S. K. et al. 2012. Production, purification, and characterization of antifungal metabolite from Pseudomonas aeruginosa SD12, a new strain obtained from tannery waste polluted soil. J. Microbiol. Biotechnol. 22: 674-683.   DOI
43 Genta, F. A., Dillon, R. J., Terra, W. R. and Ferreira, C. 2006. Potential role for gut microbiota in cell wall digestion and glucoside de-toxification in Tenebrio molitor larvae. J. Insect. Physiol. 52: 593-601.   DOI
44 Hameeda, B., Harini, G., Rupela, O. P., Wani, S. P. and Reddy, G. 2008. Growth promotion of maize by phosphate-solubilizing bacteria isolated from composts and macrofauna. Microbiol. Res. 163: 234-242.   DOI