• Title/Summary/Keyword: backwater

Search Result 76, Processing Time 0.029 seconds

variation of Water Surface due to constriction in Open Channel (개수로의 단면축소로 인한 수면변화)

  • 조용준;차영기;윤태훈
    • Water for future
    • /
    • v.18 no.4
    • /
    • pp.361-367
    • /
    • 1985
  • The variation of water surface profile due to the constriction of flow section in open channel was analysed by numerical scheme. Findings are that the variations of water surface are mainly dependent on the constriction ratio and Froude number of uniform flow, and the magnitudes of backwater obtained from the flow profiles agrees fairly well with the experiments by Skogerboe. This implies that the backwater can be predicted by numerical technique.

  • PDF

Determination of the Depth of Sewers in Residental Complexes (주택단지내 하수관거의 매설심도 결정에 관한 연구)

  • Lim, Bong Su;Choi, Eui So;Yi, Yun Seok
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.8 no.3
    • /
    • pp.41-50
    • /
    • 1994
  • The depth of sewers in residential complexes was determined to prevent the separated sewers from misconnection between storm sewer and sanitary sewer, and from the submersion of the basement by minimizing the phenomenon of backwater when it rains. In residential complexes, main causes of the submersion were the misconnection of sewers, rising of the backwater level at outfall in sewer system, poor maintenance of sewers, and lacking in their cross section. Minimum depth of sewers should be over 1.2~1.5m. According to the economic analysis, the depth of 1.5m~3.0m was appropriate for minimizing the submersion of basements and for making the disposal of domestic wastewater more easily.

  • PDF

Flood Damage Estimation causing Backwater due to the Blockage by Debris in the Bridges (교량에 집적된 유송잡물의 배수영향에 의한 홍수피해 분석)

  • Kim, Soo-Jun;Chung, Jae-Hak;Lee, Jong-Seol;Kim, Ji-Tae
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.7 no.4
    • /
    • pp.59-66
    • /
    • 2007
  • The bridge crossing river is the one of the major factors causing backwater level rising. Furthermore, the bridges in the mountainous areas increase the flood damage in the upstream of the bridge due to the blockage by debris. In this research, the effects of debris to the magnitude of flood damage in the study river basin were simulated by using HEC-RAS and HEC-GeoRAS models. With assumption that the backwater caused by debris blocking the space between bridge piers is the only factor causing inundation, the unsteady flow simulation was carried out with various case studies. The potential inundation area with the overflow locations and volumes could be estimated as the results of simulation. However, the simulation results also reveal the limitations of inaccurate estimation of inundation area and depth. To overcome these hindrances, DEM and satellite images were applied to the simulation. By readjusting the inundation area using digital maps and satellite images and calibrating overflow volume and depth using DEM, the accuracy of simulation could be increased resulting more accurate flood damage estimation.

Reservoir Routing in Estuary Lake Influenced by Tidal Effects (조석 영향을 받는 하구호에서의 저수지추적)

  • Kim, Joo-Young;Lee, Jong-Kyu;Yoon, Kwang-Seok;Kim, Han-Sup
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.722-725
    • /
    • 2007
  • Geum River Estuary Barrage is very important for the irrigation, municipal and industrial uses in the cities of Gunsan, Iksan and Jeonju. The Geum River Control Office has a flood forecasting system; however, the current system does not consider the backwater effects. As a result, it is very difficult to give correct flood information, and it is difficult to accurately assess the water resource supply and saltwater invasion into freshwater, as frequently occurs due to over-discharge during floods. In this study, we investigate the flood forecasting system for the Geum River reach influenced by the estuary barrage. The current system cannot consider the backwater effect because the estuary barrage blocks the end of the river. We calculated the discharge from the tide lock and evaluated the inside water level of the estuary barrage during floods. The results show that the calculation agrees well with the observed data at the river stage stations in the Geum River. The results also show that this program is a reasonable substitute for the current system.

  • PDF

An Analysis about Inundation and Carrying Capacity of Drain Pipes in Urban Area (도시유역의 우수관거 통수능 및 침수특성 분석)

  • Lee, Jung-Ho;Jo, Duk-Jun;Kim, Joong-Hoon;Kim, Eung-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.1
    • /
    • pp.110-115
    • /
    • 2007
  • The localized rainfall happens frequently in urban areas recently and then, he drain pipes of urban areas do not drain well when the localized rainfalls happen. Specially, the inundation by the backwater on the lowland should be solved certainly in urban planning and sewer rehabilitation. In this study, it was examined whether the carrying capacities of the drain pipe are satisfied about a current design standard of the rainfall considering the outflows of the urban areas by the rainfall analysis. Also, the backwater in the drain pipe and the inundation on the lowland were analyzed considering the water level of the discharged river and the propriety of the design standard was examined by the analysis about the rainfall frequency. Also, the results offered the basic data to decide whether the detention reservoir should be established and the scale of the pump station.

  • PDF

A Study on Blasting Method for the Smallest of the Scour Depth after Pier Construction (교각의 세굴심도 최소화를 위한 발파공법 연구)

  • 김가현;김종주;안명석
    • Explosives and Blasting
    • /
    • v.21 no.3
    • /
    • pp.23-35
    • /
    • 2003
  • An analytical diffusion model for flood routing with backwater effects and lateral flows is developed. The basic diffusion equation is linearized about an average depth of (H + h), and is solved using the boundary conditons which take into account the effects of backwater and lateral flows. Scouring phenomenon around pier which affects on the support function of pier and the stabilization if river bed is a complex problem depending on flow properties and river bed state as well as pier geometry. therefore, there is no uniting theory at present which would enable the designer to estimate, with confidence, the depth of scour at bridge piers. The various methods used in erosion control are collectively called upstream engineering, HEC-RAS Model, underwater blasting. They consist of reforestation, check-dam construction, planting of burned-over areas, contour plowing and regulation of crop and grazing practices. Also included are measures for proper treatment of high embankments and cuts and stabilization of streambanks by planting or by revetment construction. One phase of reforestation that may be applied near a reservoir is planting of vegetation screens. Such screens, planted on the flats adjacent to the normal stream channel at the head of a reservoir, reduce the velocity of silt-laden storm inflows that inundate these areas. This stilling action causes extensive deposition to occur before the silt reaches the main cavity of the reservoir.

Analysis of Flood Characteristics at Confluence by Lateral Inflow (횡유입에 의한 합류부 홍수특성 분석)

  • Choi, Hung-Sik;Cho, Min-Suk;Park, Young-Seop
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.6 no.1 s.20
    • /
    • pp.59-68
    • /
    • 2006
  • Flow separation of recirculation zone by increasing of flow and change of its direction at confluence results in backwater due to conveyance reduction. The hydraulic characteristics of flow separation are analysed by experimental results of flow ratios of tributary and main streams and approaching angles. The boundary of flow separation by dimensionless length and width is defined by the streamline of zero and this definition agrees well to the existing investigation. Because flow separation doesn't appear in small flow ratio and approaching angle of $30^{\circ}$, the equation of flow separation with flow ratio and approaching angle is provided. In flow separation consideration and comparing with previous results, the existing equations of dimensionless length and width ratios by function of approaching angle, flow ratio, and downstream Froude number are modified and also contraction coefficient and shape factor are analysed. Dimensionless length and width ratios are proportional to the flow ratio and approaching angle. In analysis of water surface profiles, the backwater effects are proportional to the flow ratio and approaching angle and the magnitude at outside wall is greater than that of inside wall of main stream. The length, $X_l$ from the beginning of confluence to downstream of uniform flow, where the depth is equal to uniform depth, is characterized by width of stream, flow ratio, approaching angle, and contraction coefficient. The ratios between maximum water depth by backwater and minimum depth at separation are analysed.

Effect of Chungju Dam Operation for Flood Control in the Upper Han River (충주댐 방류에 따른 댐 상하류 홍수위 영향 분석)

  • Kim, Sang Ho;Kim, Ji-Sung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.2
    • /
    • pp.537-548
    • /
    • 2013
  • In this study, the hydraulic channel routing model was constructed to analysis the effect of flood control with the operation of Chungju Dam for 2006 flood. Study area was divided with up- and downstream of Chungju Dam in the upper Han River of Paldang Dam. The model was calibrated and verified for the flood event of 1995-2008. The effects of flood control of Chungju Dam were compared with the simulation results without the dam, and the rising effects of stage in the main observation stations were analyzed by the variation of released dam discharge. Consequently, the operation of Chungju Dam for 2006 flood was performed properly, but the effects of flood control of Chungju Dam were so focused in downstream of the dam that institutional complement was demanded to reduce the flood damage in the upper region of the dam. The limit of decision rule of downstream stage in the backwater region of dam was analyzed to solve the problem, and the decision rule of downstream stage was proposed to consider the discontinuity between the backwater region of dam and the design flood of upper stream. The proposed rule will be used to design the reduction of flood damage in upper stream of dam and to apply the analysis of region for flood damage.

A Channel Flood Routing by the Analytical Diffusion Model

  • Yoon, Yong-Nam;Yoo, Chul-Sang
    • Korean Journal of Hydrosciences
    • /
    • v.1
    • /
    • pp.1-14
    • /
    • 1990
  • The analytical diffusion model is first formulated and its characteristics are critically reviewed. The flood events during the 1985-1986 flood seasons in the IHP Pyungchang Representative Basin are routed by this model and are compared with those routed by the kinematic wave model. The present model is proven to be an excellent means of taking the backwater effects due to lateral inflow or downstream river stage variations into consideration in channel routing of flood flows. It also requires much less effort and computing time at a desired station compared to any other reliable flood routing methods.

  • PDF

Analysis of the Vulnerable Area about Inundation on the Upriver Basin of Dam by Flood Simulation Using GIS (GIS 홍수 시뮬레이션에 의한 댐 상류 유역의 침수 취약지역 분석)

  • Um, Dae-Yong;Kim, Ji-Hye
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.27 no.6
    • /
    • pp.723-731
    • /
    • 2009
  • Recently, it has been strangely increasing rainfall and rainfall meter by global warming. so flood damage is being increase. It has happened there are so many damaged by influence by backwater of dam. However, the alleviative solutions of flood damages are focused on the lower river basin where the density of population is higher than upper river basin. This research proceeds based on design and build 3D topography model and reflects the topographical factors of upper river basin. It also simulated the circumstances of flooding by investigation of factors of outflow, hence, as a result, we would find out the vulnerable area for flooding and scale of damages effectively. This research suggests the solution and method of flooding for vulnerable area of the flooding to reduce the damages by predicting flooding. Thus, the suggestion may support to make a decision efficiently to prevent the damage of flooding.