• Title/Summary/Keyword: backward facing step

Search Result 101, Processing Time 0.033 seconds

Active Flow Control Technology for Vortex Stabilization on Backward-Facing Step (와류 안정화를 위한 후향계단 유동 능동제어기법)

  • Lee, Jin-Ik
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.1
    • /
    • pp.246-253
    • /
    • 2013
  • This paper addresses the technology of active flow control for stabilizing a flow field. In order for flow field modeling from the control point of view, the huge-data set from CFD(computational fluid dynamics) are reduced by using a POD(Proper Orthogonal Decomposition) method. And then the flow field is expressed with dynamic equation by low-order modelling approach based on the time and frequency domain analysis. A neural network flow estimator from the pressure information measured on the surface is designed for the estimation of the flow state in the space. The closed-loop system is constructed with feedback flow controller for stabilizing the vortices on the flow field.

Numerical Simulation of Turbulent Heat Transfer in Locally-Forced Separated and Reattaching Flow (국소교란에 의한 박리 재부착 유동에서의 난류 열전달 수치해석)

  • Ri, Gwang-Hun;Seong, Hyeong-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.1
    • /
    • pp.87-95
    • /
    • 2001
  • A numerical study was made of heat transfer in locally-forced turbulent separated and reattaching flow over a backward-facing step. The local forcing was given to the flow by means of sinusoidally oscillating jet from a separation line. A Rhee and Sung version of the unsteady $\kappa$-$\varepsilon$-f(sub)u model and the diffusivity tensor heat transfer model were employed. The Reynolds number was fixed at Re(sub)H=33,000 and the forcing frequency was varied in the range 0$\leq$fH/U(sub)$\infty$$\leq$2. The condition of constant heat flux was imposed at the bottom wall. The predicted results were compared and validated with the experimental data of Chun and Sung and Vogel and Eaton. The enhancement of heat transfer in turbulent separated and reattaching flow by local forcing was evaluated and analyzed.

A Passive Control of Cavity-Induced Pressure Oscillations Using Sub-Cavity System (보조공동계를 이용한 공동 유기 압력진동의 피동제어)

  • Kang, M.S.;Kwon, J.K.;Lee, J.S.;Kim, H.D.;Setoguchi, T.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.452-455
    • /
    • 2008
  • A new passive control technique of cavity-induced pressure oscillations has been investigated numerically for a supersonic two-dimensional flow over open rectangular cavities at Mach number 1.83 just upstream of a cavity, in which a sub-cavity system is installed on the backward-facing step of the main cavity. A third-order TVD (Total Variation Diminishing) finite difference scheme with MUSCL is used to discretize the spatial derivatives in the unsteady compressible Navier-Stokes equations. The results obtained show that the present sub-cavity system is very effective in reducing cavity-induced pressure oscillations. The results also showed that the resultant amount of attenuation of cavity-induced pressure oscillations was dependent on the length and thickness of the flat plate, and also on the depth of the sub-cavity used as an oscillation suppressor.

  • PDF

Large eddy simulation of turbulent flow using the parallel computational fluid dynamics code GASFLOW-MPI

  • Zhang, Han;Li, Yabing;Xiao, Jianjun;Jordan, Thomas
    • Nuclear Engineering and Technology
    • /
    • v.49 no.6
    • /
    • pp.1310-1317
    • /
    • 2017
  • GASFLOW-MPI is a widely used scalable computational fluid dynamics numerical tool to simulate the fluid turbulence behavior, combustion dynamics, and other related thermal-hydraulic phenomena in nuclear power plant containment. An efficient scalable linear solver for the large-scale pressure equation is one of the key issues to ensure the computational efficiency of GASFLOW-MPI. Several advanced Krylov subspace methods and scalable preconditioning methods are compared and analyzed to improve the computational performance. With the help of the powerful computational capability, the large eddy simulation turbulent model is used to resolve more detailed turbulent behaviors. A backward-facing step flow is performed to study the free shear layer, the recirculation region, and the boundary layer, which is widespread in many scientific and engineering applications. Numerical results are compared with the experimental data in the literature and the direct numerical simulation results by GASFLOW-MPI. Both time-averaged velocity profile and turbulent intensity are well consistent with the experimental data and direct numerical simulation result. Furthermore, the frequency spectrum is presented and a -5/3 energy decay is observed for a wide range of frequencies, satisfying the turbulent energy spectrum theory. Parallel scaling tests are also implemented on the KIT/IKET cluster and a linear scaling is realized for GASFLOW-MPI.

Vortex sheddings and Pressure Oscillations in Hybrid Rocket Combustion (하이브리드로켓 연소실의 와류발생과 연소압력 진동)

  • Park, Kyungsoo;Shin, Kyung-Hoon;Lee, Changjin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.1
    • /
    • pp.40-47
    • /
    • 2013
  • The similarity in internal flow of solid and hybrid rocket suggests that hybrid rocket combustion can be susceptible to instability due to vortex sheddings and their interaction. This study focuses on the evolution of interaction of vortex generated in pre-chamber with other types of vortex in the combustor and the change of combustion characteristics. Baseline and other results tested with disks show that there are five different frequency bands appeared in spectral domain. These include a frequency with thermal lag of solid fuel, vortex shedding due to obstacles such as forward, backward facing step and wall vortices near surface. The comparison of frequency behavior in the cases with disk 1 and 3 reveals that vortex shedding generated in pre-chamber can interact with other types of vortex shedding at a certain condition. The frequency of Helmholtz mode is one of candidates resulting to a resonance when it was excited by other types of oscillation even if this mode was not discernable in baseline test. This selective mechanism of resonance may explain the reason why non-linear combustion instability occurs in hybrid rocket combustion.

Analysis of Turbulent flow using Pressure Gradient Method (압력구배기법을 이용한 난류 유동장 해석)

  • 유근종
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.3 no.2
    • /
    • pp.1-9
    • /
    • 1999
  • Applicability of the pressure gradient method which is formulated based on pressure gradient is verified against turbulent flow analysis. In the pressure gradient method, pressure gradient instead of pressure itself is obtained using continuity constraint. Since correct pressure gradient is found only when mass conservation is satisfied, pressure gradient method can reflect physics of flow field properly The pressure gradient method is formulated with semi-staggered grid system which locates each primitive variables on the same grid point but evaluates pressure gradient in-between. This grid system ensures easy programming and reflection of correct physics in analysis. For verifying applicability of this method, the pressure gradient method is applied to turbulent flow analysis with low Reynolds number $\kappa$-$\varepsilon$ model. Turbulent flows include fully developed channel flow, backward-facing step flow, and conical diffuser flow. Prediction results show that the pressure gradient method can be applied to turbulent flow analysis. However, the pressure gradient method requires somewhat long computation time. Proper way to find optimum under-relaxation factor, $\gamma$, is also need to be developed.

  • PDF

Numerical Investigation on Aerodynamic Characteristics of Kline-Fogleman Airfoil at Low Reynolds Numbers (Kline-Fogleman Airfoil의 저 레이놀즈수 공력특성 연구)

  • Roh, Nahyeon;Son, Chankyu;Yee, Kwanjung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.2
    • /
    • pp.99-107
    • /
    • 2014
  • In this study, aerodynamic characteristics of Kline-Fogleman airfoils are numerically investigatied which has been widely used in remote control aircraft operating at low Reynolds numbers. The comparison of aerodynamic characteristics was conducted between NACA4415 and Kline-Fogleman airfoil based on NACA4415. ANSYS Fluent was employed with the incompressible assumption and $k-{\omega}$ SST turbulence model. It was found that lift coefficient was significantly enhanced in the range of Reynolds number from $3{\times}10^3$ to $3{\times}10^6$. Especially in the region of Reynolds number below $2.4{\times}10^5$, the lift-to-drag-ratio was improved by 26% using the Kline-Folgeman airfoil compared with NACA4415 airfoil.

Performance Analysis of the Parallel CUPID Code for Various Parallel Programming Models in Symmetric Multi-Processing System (Symmetric Multi-Processing 시스템에서 다양한 병렬 기법 모델을 적용한 병렬 CUPID 코드의 성능분석)

  • Jeon, Byoung Jin;Lee, Jae Ryong;Yoon, Han Young;Choi, Hyoung Gwon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.1
    • /
    • pp.71-79
    • /
    • 2014
  • A parallelization of the bi-conjugate gradient solver for the pressure equation of the CUPID (component unstructured program for interfacial dynamics) code, which was developed for analyzing the components of a pressurized water-cooled reactor, was studied in a symmetric multi-processing system. The parallel performance was investigated for three typical parallel programming models (MPI, OpenMP, Hybrid) by solving incompressible backward-facing step flow at various grid resolutions. It was confirmed that parallel performance was low when problem size was small or the memory requirement for each thread was considerably higher than the cache memory. Furthermore, it was shown that MPI was better than OpenMP regardless of the problem size, and Hybrid was the best when the number of threads was relatively small.

A Study of Applicability of a RNG $k-\varepsilon$ Model (RNG $k-\varepsilon$ 모델의 적용성에 대한 연구)

  • Yang, Hei-Cheon;Ryou, Hong-Sun;Lim, Jong-Han
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.9
    • /
    • pp.1149-1164
    • /
    • 1997
  • In this study, the applicability of the RNG k-.epsilon. model to the analysis of the complex flows is studied. The governing equations based on a non-orthogonal coordinate formulation with Cartesian velocity components are used and discretized by the finite volume method with non-staggered variable arrangements. The predicted results using the RNG k-.epsilon. model of three complex flows, i.e., the flow over a backward-facing step and a blunt flat plate, the flow around a 2D model car are compared to these from the standard k-.epsilon. model and experimental data. That of the unsteady axisymmetric turbulent flow within a cylinder of reciprocating model engine including port/valve assembly and the spray characteristics within a chamber of direct injection model engine are compared to these from the standard k-.epsilon. model and experimental data. The results of reattachment length, separated eddy size, average surface pressure distribution using the RNG k-.epsilon. model show more reasonable trends comparing with the experimental data than those using the modified k-.epsilon. model. Although the predicted rms velocity using the modified k-.epsilon. model is lower considerably than the experimental data in incylinder flow with poppet valve, predicted axial and radial velocity distributions at the valve exit and in-cylinder region show good agreements with the experimental data. The spray tip penetration predicted using the RNG k-.epsilon. model is more close to the experimental data than that using the modified k-.epsilon. model. The application of the RNG k-.epsilon. model seems to have some potential for the simulations of the unsteady turbulent flow within a port/valve-cylinder assembly and the spray characteristics over the modified k-.epsilon. model.

Numerical Study on Aerodynamic Characteristics of Kline-Fogleman Airfoil and Its 3D Application at Low Reynolds Number (Kline-Fogleman Airfoil과 이를 적용한 날개의 저 레이놀즈수 공력특성 연구)

  • Roh, Nahyeon;Yee, Kwanjung
    • Transactions of the KSME C: Technology and Education
    • /
    • v.2 no.1
    • /
    • pp.29-37
    • /
    • 2014
  • In this study, analyzed the aerodynamic characteristics of Kline-Fogleman airfoils and wings with those more efficiency at low Reynolds number. It was found that lift to drag ratio is enhanced in the range of Reynolds number below $2.4{\times}10^5$, especially, can be improved up to 26% at Reynolds number is $1{\times}10^4$. It was confirmed that the most advantage case in terms of lift-to-drag ratio is Middle case and lift-to-drag ratio is improved to 20% at 80% of the wing area is Kline-Folgeman airfoil. At this time, endurance time increase to 12%. Also taking the structural stability of the wing and lift-to-drag improvement into account, designed to be from 50% to 80% the size of the Kline-Fogleman Airfoil would be advantageous.