DOI QR코드

DOI QR Code

Numerical Study on Aerodynamic Characteristics of Kline-Fogleman Airfoil and Its 3D Application at Low Reynolds Number

Kline-Fogleman Airfoil과 이를 적용한 날개의 저 레이놀즈수 공력특성 연구

  • Roh, Nahyeon (Dept. of Aerospace Engineering, Pusan Nat'l Univ.) ;
  • Yee, Kwanjung (Dept. of Aerospace Engineering, Pusan Nat'l Univ.)
  • 노나현 (부산대학교 항공우주공학과) ;
  • 이관중 (부산대학교 항공우주공학과)
  • Received : 2014.01.07
  • Accepted : 2014.03.14
  • Published : 2014.03.01

Abstract

In this study, analyzed the aerodynamic characteristics of Kline-Fogleman airfoils and wings with those more efficiency at low Reynolds number. It was found that lift to drag ratio is enhanced in the range of Reynolds number below $2.4{\times}10^5$, especially, can be improved up to 26% at Reynolds number is $1{\times}10^4$. It was confirmed that the most advantage case in terms of lift-to-drag ratio is Middle case and lift-to-drag ratio is improved to 20% at 80% of the wing area is Kline-Folgeman airfoil. At this time, endurance time increase to 12%. Also taking the structural stability of the wing and lift-to-drag improvement into account, designed to be from 50% to 80% the size of the Kline-Fogleman Airfoil would be advantageous.

본 연구에서는 저 레이놀즈수에서의 Kline-Fogleman 익형과 이를 적용한 날개의 공력특성을 분석하였다. 레이놀즈수 $2.4{\times}10^5$ 이하 영역에서 양항비가 향상됨을 확인하였으며, 특히 레이놀즈수 $1{\times}10^4$에서 양항비가 26% 향상되었다. 양항비 측면에서 Kline-Fogleman 익형이 날개 중앙에 위치하는 것이 가장 유리하며, 전체 날개에 대한 Kline-Fogleman 익형의 면적이 80%일 때 양항비가 20% 증가함을 확인하였다. 이 때 항속시간은 12% 향상되었다. 또한 날개의 구조적 안정성과 양항비 향상률을 고려하였을 때 Kline-Fogleman 익형의 면적을 50%에서 80%사이로 설계하는 것이 유리할 것으로 판단된다.

Keywords

References

  1. Ahn, J., 2000, "Status and Prospect of MAVs," J. of the Korean Society for Aeronautical & Space Sciences, Vol. 28, No. 7, pp. 145-159.
  2. Fathi F., and Stephen W., 1998, "Aerodynamic Performance of an Airfoil with Step-Induced Vortex for Lift Augmentation," J. of Aerospace Engineering, Vol. 11, No. 1, pp. 9-16. https://doi.org/10.1061/(ASCE)0893-1321(1998)11:1(9)
  3. Ranganadhan V., 2012, "Enhancing the Aerodynamic Performance of Stepped Airfoils," MS thesis, Missouri University of Science and Technology, pp. 1-78.
  4. Ira, H. A., and Albert C. Von D., 1958, Theory of Wing Sections, Dover, NewYork, pp. 490-491.
  5. http://www.pointwise.com/gridgen/
  6. So, R. M. C., and Lai, Y. G., 1998, "Low Reynolds Number Modelling of Flows over a Backward Facing Step," J. of Applied Mathmatics and Physics, Vol. 39, No. 1, pp. 13-27.
  7. Wang, J. J., Li, Y. C., and Choi, K., 2008, "Gurney Flap-Lift Enhancement, Mechanisms and Applications," Progress in Aerospace Sciences, Vol. 44, No. 1, pp. 22-47. https://doi.org/10.1016/j.paerosci.2007.10.001
  8. Steven A. B., Randall J. S., John J. B., Ray W., 2004, Introduction to Aeronautics: A Design Perspective, AIAA, p.212.