• 제목/요약/키워드: backward difference formula

검색결과 15건 처리시간 0.023초

차량 실시간 시뮬레이션을 위한 암시적 수치 알고리즘 (Implicit Numerical Algorithm for Real-time simulation of a Vehicle)

  • 박민영;이정근;송창섭;배대성
    • 한국자동차공학회논문집
    • /
    • 제6권3호
    • /
    • pp.143-153
    • /
    • 1998
  • In this reaserch, a program for real time simulation of a vehicle is developed. This program uses relative coordinates to save the computation time and BDF(Backward Difference Formula) to integrate system variables. Numerical tests were performed for J-turn and Lane change steering, respectively. The validity of the program is proved by the ADAMS package. Numerical results showed that the proposed implicit method is more stable in carrying out the numerical integration for vehicle dynamics than the explicit method. Hardware requirements for real time simulation are suggested.

  • PDF

실시간 차량 시뮬레이터 개발을 위한 암시적 적분기법을 이용한 병렬처리 알고리즘에 관한 연구 (Study on the parallel processing algorithms with implicit integration method for real-time vehicle simulator development)

  • 박민영;이정근;배대성
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 추계학술대회 논문집
    • /
    • pp.497-500
    • /
    • 1995
  • In this paper, a program for real time simulation of a vehicle is developed. The program uses relative coordinates and BEF(Backward Difference Formula) numerical integration method. Numerical tests showed that the proposed implicit method is more stable in carring out the numerical integration for vehicl dynamics than the explicit method. Hardware requirements for real time simulation are suggested. Algorithms of parallel processing is developed with DSP (digital signal processor).

  • PDF

제어 알고리즘 구현을 위한 새로운 미분값 유도 방법 (New approach method of finite difference formulas for control algorithm)

  • 김태엽
    • 전기전자학회논문지
    • /
    • 제23권3호
    • /
    • pp.817-825
    • /
    • 2019
  • 마이크로프로세서를 이용한 제어알고리즘 구현에서 차분방정식이 매우 유용하게 사용된다. 샘플링 데이터로부터 미분 값을 추정하기 위해 전향, 후향 및 중심 차분 방식이 사용되어왔다. 차분 값을 계산하기 위해서는 차분계수가 매우 중요하다. 본 논문에서는 유한 차분 계수를 계산하기 위한 새로운 방식을 제시하고자 한다. 제안된 방식의 유효성을 입증하기 위해 RLS 알고리즘을 적용한 파라미터 추정에 대하여 적용하였다.

APPLICATION OF BACKWARD DIFFERENTIATION FORMULA TO SPATIAL REACTOR KINETICS CALCULATION WITH ADAPTIVE TIME STEP CONTROL

  • Shim, Cheon-Bo;Jung, Yeon-Sang;Yoon, Joo-Il;Joo, Han-Gyu
    • Nuclear Engineering and Technology
    • /
    • 제43권6호
    • /
    • pp.531-546
    • /
    • 2011
  • The backward differentiation formula (BDF) method is applied to a three-dimensional reactor kinetics calculation for efficient yet accurate transient analysis with adaptive time step control. The coarse mesh finite difference (CMFD) formulation is used for an efficient implementation of the BDF method that does not require excessive memory to store old information from previous time steps. An iterative scheme to update the nodal coupling coefficients through higher order local nodal solutions is established in order to make it possible to store only node average fluxes of the previous five time points. An adaptive time step control method is derived using two order solutions, the fifth and the fourth order BDF solutions, which provide an estimate of the solution error at the current time point. The performance of the BDF- and CMFD-based spatial kinetics calculation and the adaptive time step control scheme is examined with the NEACRP control rod ejection and rod withdrawal benchmark problems. The accuracy is first assessed by comparing the BDF-based results with those of the Crank-Nicholson method with an exponential transform. The effectiveness of the adaptive time step control is then assessed in terms of the possible computing time reduction in producing sufficiently accurate solutions that meet the desired solution fidelity.

NUMERICAL SOLUTIONS FOR SPACE FRACTIONAL DISPERSION EQUATIONS WITH NONLINEAR SOURCE TERMS

  • Choi, Hong-Won;Chung, Sang-Kwon;Lee, Yoon-Ju
    • 대한수학회보
    • /
    • 제47권6호
    • /
    • pp.1225-1234
    • /
    • 2010
  • Numerical solutions for the fractional differential dispersion equations with nonlinear forcing terms are considered. The backward Euler finite difference scheme is applied in order to obtain numerical solutions for the equation. Existence and stability of the approximate solutions are carried out by using the right shifted Grunwald formula for the fractional derivative term in the spatial direction. Error estimate of order $O({\Delta}x+{\Delta}t)$ is obtained in the discrete $L_2$ norm. The method is applied to a linear fractional dispersion equations in order to see the theoretical order of convergence. Numerical results for a nonlinear problem show that the numerical solution approach the solution of classical diffusion equation as fractional order approaches 2.

동압 계수의 불연속성을 이용한 내면파의 수치해석 (Internal Wave Computations based on a Discontinuity in Dynamic Pressure)

  • 신상묵;김동훈
    • 대한조선학회논문집
    • /
    • 제41권4호
    • /
    • pp.17-29
    • /
    • 2004
  • Internal waves are computed using a ghost fluid method on an unstructured grid. Discontinuities in density and dynamic pressure are captured in one cell without smearing or oscillations along a multimaterial interface. A time-accurate incompressible Navier-Stokes/Euler solver is developed based on a three-point backward difference formula for the physical time marching. Artificial compressibility is introduced with respect to pseudotime and an implicit method is used for the pseudotime iteration. To track evolution of an interface, a level set function is coupled with the governing equations. Roe's flux difference splitting method is used to calculate numerical fluxes of the coupled equations. To get higher order accuracy, dependent variables are reconstructed based on gradients which are calculated using Gauss theorem. For each edge crossing an interface, dynamic pressure is assigned for a ghost node to enforce the continuity of total pressure along the interface. Solitary internal waves are computed and the results are compared with other computational and experimental results.

샤시 프레임에 용접한 스트러트 접합부의 설계 민감도 해석 (Design Sensitivity Analysis of Welded Strut Joints on Vehicle Chassis Frame)

  • 김동우;양성모;김형우;배대성
    • Journal of Welding and Joining
    • /
    • 제16권3호
    • /
    • pp.141-147
    • /
    • 1998
  • Design sensitivity analysis of a vehicle system is an essential tool for design optimization and trade-off studies. Most optimization algorithms require the derivatives of cost and constraint function with respect to design in order to calculate the next improved design. This paper presents an efficient algorithm application for the design sensitivity analysis, using the direct differentiation method. A mounting area of suspension that welded on chassis frame is analyzed to show the validity and the efficiency of the proposed method. A mounting area of suspension that welded on chassis frame is analyzed to show the validity and the efficiency of the proposed method.

  • PDF

병렬 프로그램 실행을 위한 ELI 기반 동적 부하 균등화 (An ELI-based Dynamic Load Balancing for Parallel Program Executions)

  • 배인한
    • 한국통신학회논문지
    • /
    • 제19권6호
    • /
    • pp.1016-1026
    • /
    • 1994
  • 본 논문에서 분산 시스템의 각 노드들은 노드들간에 주기적으로 교환되는 시스템 상태 정보를 히스토리에 저장하고, 그 히스토리 정보에 Newton의 후향 보간법의 5차 보간 다항식을 사용하여 다음 주기의 예측 부하 지수(ELI)를 계산한다. 계산되어진 ELI를 동적 부하 균등화 시스템의 로케이션 정책에 이용하였다. 그 결과 ELI 기반 동적 부하 균등화 시스템은 기존의 부하 균등화 알고리즘에 비해 성능이 우수함을 시뮬레이션을 통하여 알 수 있었다.

  • PDF

A recursive approach for mechanical system design sensitivity analysis

  • Daesung Bae
    • 한국공작기계학회논문집
    • /
    • 제10권1호
    • /
    • pp.101-111
    • /
    • 2001
  • Recursive formulas have been effective in solving the equations of motion for large scale constratined mechanical sys-tems. However, derivation of the formulas has been limited to individual terms in the equations of motion, such as veloci-ty, acceleration. and generalized forces. The recursive formulas are generalized in this paper. The velocity transformation method is employed to transform the equations of motion from Cartesian to the joint spaces. Computational structure of the equations of motion in the joint space is carefully examined to classify all necessary computational operations into sev-eral categories. The generalized recursive formula for each category is then developed and applied whenever such a cate-gory of computation is encountered. Since the velocity transformation method yields the equations of motion in a compact form and computational efficiency is achieved by generalized recursive formulas, the proposed method is not only easy to implement but is also efficient. A library of generalized recursive formulas is developed to implement a dynamic analysis algorithm using backward difference.

  • PDF

A Configuration Design Sensitivity Analysis for Kinematically driven Mechanical Systems

  • Kim, D.W.;Yang, S.M.;Kim, H.W.;Bae, D.S.
    • 한국생산제조학회지
    • /
    • 제7권3호
    • /
    • pp.110-117
    • /
    • 1998
  • A continuum-based configuration design sensitivity analysis method is developed for kinematically driven mechanical systems. The configuration design variable for mechanical systems is defined. The 3-1-3 Euler angle is employed as the orientation design variable. Kinematic admissibility conditions of configuration design change. Direct differentiation method is used to derive the governing equations of the design sensitivity. Numerical examples are presented to demonstrate the validity and effectiveness of the proposed method.

  • PDF