• Title/Summary/Keyword: backpropagation neural network

Search Result 449, Processing Time 0.038 seconds

Recognition of Partial Discharge Patterns using Classifiers and the Neural Network (신경회로망과 Classifier를 이용한 부분방전패턴의 인식)

  • 이준호;이진우
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.132-135
    • /
    • 1999
  • In this work, two approaches were proposed for the recognition of partial discharge patterns. The first approach was neural network with backpropagation algorithm, and the second approach was angle calculation between two operator vectors. PD signal were detected using three electrode systems; IEC(b), needle-plane and CIGRE method II electrode system. Both of neural network and angle comparison method showed good recognition performance for the patte군 similar to the trained patterns. And the number of operators to be used had a great influence on the recognition performance to the untrained patterns.

  • PDF

A study on the Adaptive Neural Controller with Chaotic Neural Networks (카오틱 신경망을 이용한 적응제어에 관한 연구)

  • Sang Hee Kim;Won Woo Park;Hee Wook Ahn
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.4 no.3
    • /
    • pp.41-48
    • /
    • 2003
  • This paper presents an indirect adaptive neuro controller using modified chaotic neural networks(MCNN) for nonlinear dynamic system. A modified chaotic neural networks model is presented for simplifying the traditional chaotic neural networks and enforcing dynamic characteristics. A new Dynamic Backpropagation learning method is also developed. The proposed MCNN paradigm is applied to the system identification of a MIMO system and the indirect adaptive neuro controller. The simulation results show good performances, since the MCNN has robust adaptability to nonlinear dynamic system.

  • PDF

An Efficient Fault-diagnosis of Digital Circuits Using Multilayer Neural Networks (다층신경망을 이용한 디지털회로의 효율적인 결함진단)

  • 조용현;박용수
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.1033-1036
    • /
    • 1999
  • This paper proposes an efficient fault diagnosis for digital circuits using multilayer neural networks. The efficient learning algorithm is also proposed for the multilayer neural network, which is combined the steepest descent for high-speed optimization and the dynamic tunneling for global optimization. The fault-diagnosis system using the multilayer neural network of the proposed algorithm has been applied to the parity generator circuit. The simulation results shows that the proposed system is higher convergence speed and rate, in comparision with system using the backpropagation algorithm based on the gradient descent.

  • PDF

Composite Neural Networks for Controlling Semi-Linear Dynamical Systrms: Example from Inverted Pendulum Problem

  • Yamamoto, Yoshinobu;Anzai, Yuichiro
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.1129-1134
    • /
    • 1989
  • In this paper, we propose a neural network for learning to control semi-linear dynamical systems. The network is a composite system of four three-layer backpropagation subnetworks, and is able to control inverted pendulums better than systems based on modern control theory at least in some ranges of parameters. Three of the four subnetworks in our network system process angles, velocities, and positions of a moving inverted pendulum, respectively. The outputs from those three subnetworks are input to the remaining subnetwork that makes control decisions. Each of the four subnetworks learns connection weights independently by backpropagation algorithms. Teaching signals are given by the human operator. Also, input signals are generated by the human operator, but they are converted by preprocessors to actual input data for the three subnetworks except for the network for control decisions. The whole system is implemented on both of 16 bit personal computers and 32 bit workstations. First, we briefly provide the research background and the inverted pendulum problem itself, followed by the description of our composite neural network model. Next, some results from the simulation are given, which are subsequently compared with the results from a control system based on modern control theory. Then, some discussions and conclusion follow.

  • PDF

A Sensitivity Analysis of Design Parameters of an Underground Radioactive Waste Repository Using a Backpropagation Neural Network (Backpropagation 인공신경망을 이용한 지하 방사성폐기물 처분장 설계 인자의 민감도 분석)

  • Kwon, S.;Cho, W.J.
    • Tunnel and Underground Space
    • /
    • v.19 no.3
    • /
    • pp.203-212
    • /
    • 2009
  • The prediction of near field behavior around an underground high-level radioactive waste repository is important for the repository design as well as the safety assessment. In this study, a sensitivity analysis for seven parameters consisted of design parameters and material properties was carried out using a three-dimensional finite difference code. From the sensitivity analysis, it was found that the effects of borehole spacing, tunnel spacing, cooling time and rock thermal conductivity were more significant than the other parameters. For getting a statistical distribution of buffer and rock temperatures around the repository, an artificial neural network, backpropagation, was applied. The reliability of the trained neural network was tested with the cases with randomly chosen input parameters. When the parameter variation is within ${\pm}10%$, the prediction from the network was found to be reliable with about a 1% error. It was possible to calculate the temperature distribution for many cases quickly with the trained neural network. The buffer and rock temperatures showed a normal distribution with means of $98^{\circ}C$ and $83.9^{\circ}C$ standard deviations of $3.82^{\circ}C$ and $3.67^{\circ}C$, respectively. Using the neural network, it was also possible to estimate the required change in design parameters for reducing the buffer and rock temperatures for $1^{\circ}C$.

Fraud Detection in E-Commerce

  • Alqethami, Sara;Almutanni, Badriah;AlGhamdi, Manal
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.6
    • /
    • pp.200-206
    • /
    • 2021
  • Fraud in e-commerce transaction increased in the last decade especially with the increasing number of online stores and the lockdown that forced more people to pay for services and groceries online using their credit card. Several machine learning methods were proposed to detect fraudulent transaction. Neural networks showed promising results, but it has some few drawbacks that can be overcome using optimization methods. There are two categories of learning optimization methods, first-order methods which utilizes gradient information to construct the next training iteration whereas, and second-order methods which derivatives use Hessian to calculate the iteration based on the optimization trajectory. There also some training refinements procedures that aims to potentially enhance the original accuracy while possibly reduce the model size. This paper investigate the performance of several NN models in detecting fraud in e-commerce transaction. The backpropagation model which is classified as first learning algorithm achieved the best accuracy 96% among all the models.

A Performance Comparison of Backpropagation Neural Networks and Learning Vector Quantization Techniques for Sundanese Characters Recognition

  • Haviluddin;Herman Santoso Pakpahan;Dinda Izmya Nurpadillah;Hario Jati Setyadi;Arif Harjanto;Rayner Alfred
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.3
    • /
    • pp.101-106
    • /
    • 2024
  • This article aims to compare the accuracy of the Backpropagation Neural Network (BPNN) and Learning Vector Quantization (LVQ) approaches in recognizing Sundanese characters. Based on experiments, the level of accuracy that has been obtained by the BPNN technique is 95.23% and the LVQ technique is 66.66%. Meanwhile, the learning time that has been required by the BPNN technique is 2 minutes 45 seconds and then the LVQ method is 17 minutes 22 seconds. The results indicated that the BPNN technique was better than the LVQ technique in recognizing Sundanese characters in accuracy and learning time.

Comparison between Neural Network and Conventional Statistical Analysis Methods for Estimation of Water Quality Using Remote Sensing (원격탐사를 이용한 수질평가시의 인공신경망에 의한 분석과 기존의 회귀분석과의 비교)

  • 임정호;정종철
    • Korean Journal of Remote Sensing
    • /
    • v.15 no.2
    • /
    • pp.107-117
    • /
    • 1999
  • A comparison of a neural network approach with the conventional statistical methods, multiple regression and band ratio analyses, for the estimation of water quality parameters in presented in this paper. The Landsat TM image of Lake Daechung acquired on March 18, 1996 and the thirty in-situ sampling data sets measured during the satellite overpass were used for the comparison. We employed a three-layered and feedforward network trained by backpropagation algorithm. A cross validation was applied because of the small number of training pairs available for this study. The neural network showed much more successful performance than the conventional statistical analyses, although the results of the conventional statistical analyses were significant. The superiority of a neural network to statistical methods in estimating water quality parameters is strictly because the neural network modeled non-linear behaviors of data sets much better.

A Decentralized Approach to Power System Stabilization by Artificial Neural Network Based Receding Horizon Optimal Control (이동구간 최적 제어에 의한 전력계통 안정화의 분산제어 접근 방법)

  • Choi, Myeon-Song
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.7
    • /
    • pp.815-823
    • /
    • 1999
  • This study considers an implementation of artificial neural networks to the receding horizon optimal control and is applications to power systems. The Generalized Backpropagation-Through-Time (GBTT) algorithm is presented to deal with a quadratic cost function defined in a finite-time horizon. A decentralized approach is used to control the complex global system with simpler local controllers that need only local information. A Neural network based Receding horizon Optimal Control (NROC) 1aw is derived for the local nonlinear systems. The proposed NROC scheme is implemented with two artificial neural networks, Identification Neural Network (IDNN) and Optimal Control Neural Network (OCNN). The proposed NROC is applied to a power system to improve the damping of the low-frequency oscillation. The simulation results show that the NROC based power system stabilizer performs well with good damping for different loading conditions and fault types.

  • PDF

Twowheeled Motor Vehicle License Plate Recognition Algorithm using CPU based Deep Learning Convolutional Neural Network (CPU 기반의 딥러닝 컨볼루션 신경망을 이용한 이륜 차량 번호판 인식 알고리즘)

  • Kim Jinho
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.19 no.4
    • /
    • pp.127-136
    • /
    • 2023
  • Many research results on the traffic enforcement of illegal driving of twowheeled motor vehicles using license plate recognition are introduced. Deep learning convolutional neural networks can be used for character and word recognition of license plates because of better generalization capability compared to traditional Backpropagation neural networks. In the plates of twowheeled motor vehicles, the interdependent government and city words are included. If we implement the mutually independent word recognizers using error correction rules for two word recognition results, efficient license plate recognition results can be derived. The CPU based convolutional neural network without library under real time processing has an advantage of low cost real application compared to GPU based convolutional neural network with library. In this paper twowheeled motor vehicle license plate recognition algorithm is introduced using CPU based deep-learning convolutional neural network. The experimental results show that the proposed plate recognizer has 96.2% success rate for outdoor twowheeled motor vehicle images in real time.