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A Decentralized Approach to Power System Stabilization by Artificial Neural
Network Based Receding Horizon Optimal Control

(Myeon-Song Choi)

Abstract —This study considers an implementation of artificial neural networks to the receding horizon optimal control and its
applications to power systems. The Generalized Backpropagation-Through-Time (GBTT) algorithm is presented to deal with a
quadratic cost function defined in a finite-time horizon. A decentralized approach is used to control the complex global system

with simpler local controllers that need only local information.

A Neural network based Receding horizon Optimal Control

(NROC) law is derived for the local nonlinear systems. The proposed NROC scheme is implemented with two artificial neural

networks,

Identification Neural Network (IDNN) and Optimal Control Neural Network (OCNN).

The proposed NROC is

applied to a power system to improve the damping of the low-frequency oscillation. The simulation results show that the

NROC based power system stabilizer performs well with good damping for different loading conditions and fault types.

Key Words : Neural network, Receding horizon optimal control, Decomposition, Power system stabilizing control

1. Introduction

Control of large scale systems such as a power system
has been recognized as one of the foremost challenges in
control engineering due to its nonlinearty and complexity.
In handling nonlinearty, the use of an artificial neural
network is very attractive because of its nonlinear
mapping ability. For complexity coming from high
dimension or for the spatial distribution of a large scale
system, decentralized control is a practical approach in
solving the problem. Neural networks have attractive
capacity in handling sensory information, and performing
collective learning from the data sets given for a
sub-systermn in the decentralized control approach. The
approximation property of neural networks can make it
possible to organize a sub-system dynamics, including
interaction effects between sub-systems, to a certain
degree by training the input/output relationships obtained
in the full svstem operation. From this point of view, a
Neural network based Receding horizon Optimal Control
(NROC) for a large scale system is proposed when only
a local information of input/output operation data for a
sub-system is available.

An important control problem arising from the
interconnection of power systems is the stability problem,
frequency

usually in the form of self-excited low

oscillations [1]. This type of instability is actually caused
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by the cross-coupling between the speed control loop and
the voltage control loop shown in Fig. 1.
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Fig. 1 Basic components of an electric power plant

Over the past decades, there have been considerable
researches on Power System Stabilizer (PSS) design to
damp the low-frequency oscillations. A practical PSS to
enhance the damping of the low-frequency oscillations
must be robust over a wide range of operating conditions
oscillation modes [1-5].
However, conventional PSS design approaches based on

and capable of damping
linearlized models at the normal operating point have
deficiencies and difficulties coming from nonlinearties in
the system model when the system in abnormal or
emergency state resulted from a fault.

There are cases where neural networks are applied for
power system stabilizing control [6, 7]. However, these
cases are limited to speed deviation control with
supplementary excitation signal and presented for a
system with a single generator connected to an infinite
bus to avoid the complexity of the interconnected power
Yu [1] stressed that it is desirable in
the PSS controller design to consider mutual interactions

In this

system dynamics.

among generators networked in a power system.
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paper, neural networks are applied to stabilize the
low-frequency oscillation for a power system with two
generators interconnected by a tie-line. In our earlier
paper[6], neural networks were used to design a power
system stabilizer. However, due to the complexity of the
problem neural networks were used only to estimate
power flow dynamic, and other machine dynamics were
assumed known, By taken advantage of the decentralized
control capability of NROC, we have extended the
approach to estimate the plant output response directly.
Thus no assumptions are made on plant parameters,
resulting in al general purpose PSS that can be applied to
different machines.

The use of neural networks in control has been
focused mostly on the Model Reference Adaptive Control
(MRAC) problem [7-9]. However, the MRAC approach
has difficulty in selecting an appropriate reference model.
In order to develop a general purpose PSS, this paper
introduces a new class of control problems with neural
networks, namely the receding horizon optimal control
problem, which resulted in the proposed NROC. The
control objective is to minimize a general quadratic cost
function of output errors and control efforts for a finite
time receding horizon. The general purpose NROC is
developed for an arbitrary nonlinear plant and the
Generalized  Backpropagation-Through-Time (GBTT)
algorithm is developed to train NROC in Section II. The
NROC is then applied to the power system stabilization
problem along with number of case studies in Section HI,
and conclusions are drawn in Section IV.

2. Design of Neuro—-Controlier

2.1. Receding Horizon Optimal Control Problem

We consider a system in the form of the general
nonlinear auto-regressive moving average (NARMA)
model:
y(k+l)=f(y(k),y(1c-l),"',y(k-nH),u(k),u(k-]),-",u(k—m-»l))y

(1)
where y and u, respectively, represent output and input
variables, k represents time index, and n and m represent
When the
target output of a plant holds up for some time and

the respective output and input delay orders.

varies from time to time, the control objective can be

defined as minimizing the following well-known
quadratic cost function in a finite time receding horizon:
Nh

NGRS 0 o -y ey R@Y) L (@)

where Yrris a given target reference output. @ and R
are positive weighting factors, and Nh is the length of
time horizon considered.

An explicit solution for the optimal control problem is

816

available for linear systems. However, it is impossible to
get a solution for nonlinear systems in general. To cope
with this problem, neural network based modeling and
control approach for nonlinear systems has been
suggested. liguni and Sakai [10] tried to design a
nonlinear regulator using neural networks, however they
are limited to a linear system with uncertain parameters.

In this paper, a novel architecture, NROC, is proposed
as a new approach to the receding horizon optimal
control problem for a nonlinear system using neural
The proposed NROC is designed with two
neural networks. One is [Identification Neural Network
(IDNN) identify  the
characteristics of a sub-system dynamics, and the other
is Optimal Control Neural Network (OCNN) to find the

receding horizon optimal control law for the sub-system.

networks.

which 1s used to nonlinear

Fig. 2 shows an architecture of NROC for a nonlinear

system.
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Fig. 2. Overall scheme of the neural network based receding
horizon optimal control

2.2. Training of Identification Neural Network (IDNN)
The proposed NROC is made of two multilayer
feedforward neural networks. The function of the
training of IDNN corresponds to the identification of the
plant dynamics. It is then used to backpropagate the
equivalent error to OCNN. Training the IDNN can be
regarded as an approximation process of a nonlinear
A NARMA
model (1) can be viewed as a nonlinear mapping from

function using input-output data sets [11].

(n+m)-dimensional input space to a one-dimensional
output space:

ks = f(Iiw) 3

where T is the identifier input vector defined as
Ly A {Y, Ytk =1y -, Y0k = n+ D, Uk), Utk =y = Uk -m+ D}
The IDNN can be viewed as a nonlinear function, F,

to approximate f ;

Piweny = Fldio, W), @

where _W, is the weight parameter matrix in the IDNN
and _;/ is estimated of y. Then, training of the IDNN is to
adjust weight parameters so that IDNN can emulate the

nonlinear function of the plant dynamics using the



input-output training patterns that are obtained from the
wide range plant operation under various operating
conditions. The error backpropagation algorithm (BPA)[11]
can be used to reduce an error function for identification
(ED) defined as follows:

Nd h =1
1 R

El = — —(y k- A'b(/url)) 2
N Z} k:02(y y ) 5)

where Y% is the output of the plant, yg is the
output of IDNN at time step k, Nd is the number of
training data sets, the superscript, i, represents the i-th
training sample, and Nh is the number of time horizon.
Learning process in the BPA is based upon an output
sensitivity as follows:

JEL 1 ) i
LA TR T N YT )
i=1,2 .. ,Nd, k=12 . ,6 Nh (6)

This error is then used to compute an equivalent error
for a node in an arbitrary layer using the BPA.
Through the
characteristics are stored in the weight parameters of
IDNN. When training is finished, IDNN is presumed to
have learned the plant characteristics approximately with

learning process, the plant dynamic

converged weight parameters |, W,’,i.e.,
Yarou= f(Lw) = 5 arn= FLivo, W) 0

2.3. Training of Optimal Control Neural Network
(OCNN)

The role of the OCNN is to stabilize tracking error
dynamics by generating control inputs which minimizes
the quadratic performance index (2) discussed before.
From the NARMA model Eq. (1), the feedback control
input can be mapping
uky = Ry k), Yok - Dy vy Yik = n+ 0, U(k ~ 1), 20k = 2),: - SUk=m+1)

®

viewed as an inverse

Its correisponding OCNN can be represented as a
nonlinear network
Uty = H(yhy, Ytk = Dy - Yk =+ D240k - D32k - 2), - Uk = m + 1)7V) (9)

Since the optimal control law is not known for the
system, its not available for training. Therefore, the
OCNN will learn the control law by trial and error. The
learning process by trial and error consists of two parts.
First, from the given initial state, the OCNN drives the
IDNN for N steps forward. Secondly, update the weight
parameters of the OCNN using the equivalent error
generated by the Generalized Backpropagation-Through-
Time algorithm presented in the following section.

Ol 72 2 Hxofo] o5t MAAE oFysie| BANO] X2 iy

Trans. KIEE. Vol. 48A, No. 7, JUL. 1999

2.4. Generalized Backpropagation-Through-Time
algorithm

Generalized Backpropagation- Through-Time (GBTT)
[12] is to generate an equivalent error from a general
quadratic cost function (2), and it is an extension of BTT
algorithm of Werbos [13]. The original BTT was for the
cost function with output error only. On the other hand,
GBTT is for the general quadratic cost function (2)
which includes not only output errors, but also input

variables as well. The GBTT is based upon two

sensitivities, Output Sensitivity, 6},, and Input Sensitivity, ‘5:,
of the cost function defined by:

L
= Jw, k=123 . 6 N+l (10)
ip_9)

"= Ay, k=012 . ,N (11)

An output Y®at an arbitrary time-step k influences
both the plant dynamics (1) and the inverse dynamics
(8).  Since the plant dynamics (1) is defined with n

delayed output variables, ie, an arbitrary output Yk
will influence the input for the next n steps, ie., Yu+bis a

function of Y& for i =1, 2 ., n Similarly, since the
inverse dynamics (8) also has n delayed output variables,

an output *w will influence the plant dynamics for the

next n steps, ie, " is a function of Y& for { = 0,

1,2 .., n-l
defined on a finite interval, ie.,

Recall that the performance index (2) is

J=I(y0u+nue;j=12,-N) 12)
Thus, the Y@ for some k is gradient of J with
respect to an output
o) " ) Oyw+n nzd ) Suw+n
= 2 ——+ P a— ~Q(res = yw))
Ay N R % 203 i Ouw s+ Oy
k+iSN+1 k+isN
ken o 9J o kel 8] Qug
=5 d D et A Guo = OQ(Yrer ~ )
ket OV Qe =k Ouw OV
1SN+1 isN
(13)

From the definition of sensitivities, (10) and (11) , the
above becomes

kano 3y ksl Ay
8 = Y 8 + v + 00—y
CT e T A e TR
B = (14

Note that this output sensitivity is depending on the

input sensitivities as well. The input %% for some k is
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sensitivity can be derived in a way similar to the output
sensitivity. The gradient of J with respect to an input

m . m-1
dJ _ 7)) 6y(k+:)+ 8] Ouk+n + Ruth
Ou(k) o1 Oy +iy Ouk) = Ouk +iy Ouk)
k+i<N+1 k+ig
k+m - k+m-1 ;
- o) Sy + o) Buw + Ruw.
i=kel OV Oucky 1Ly D) Duiny
iISN+1 i<N
(15)
Again, from the definition of sensitivities, (10) and
(11), it becomes
k+m k+m—1 au
88 = Y 8= U] > 8l Y~ Ruw
i=k+1, au(k) i=k+1, au(k)
i<N+l iSN (16)

This input sensitivity is also depending on the output
sensitivities, and both sensitivity equations are coupled to
one another. Since the plant dynamics (1) and the inverse
dynamics (8) are not known, they are approximated by
the corresponding networks, the IDNN F and the
feedback neuro-controller H, to yield

si= St eof 'yl oH

+ 00nr = 99) 17

Pt S vy Y
iSN+1 iSN
k+m oFi kym-1 OH,i
5= 8y 83 ” - Ruw
i=k Uuk) i=k+1 u
A ot : (18)

It should be noted that the las in (17) and (18) are,
respectively, the error terms for the output and input
variables, and the terms under summation operations are
the error (or delta) terms backpropagated through the

JaF; dF; .
networks F and H. For example, ~— (or —=—) is
IV duwy

the error % (or Y ) backpropagated through the

network F to the input node fl(k)(or Uiy ),
The objective of the GBTT 1is to compute the

sensitivity 5:, which will be used as the equivalent error
for training of the OCNN. This can be achieved by
solving (17) and (18) backward starting from j = N+1

j=N+1:

JII’V-H = 0
SV = Q(yrer — v +1)

J°N:

818

OFw
&y =8 o - Ruw)
+ OFN +1 OHN ~
5y =8y o + faﬁ(N)-*Q(J’ref—y(M ),
j=N-I:
Fi o dw ai
MET + +87 —Ruv -y
& 5;1 A -y xd«w-n aun -y
dwa aw . div Hv 1
&= +6) +60 +o +00her— P -1),
4 Y Gw-n T G-y B -y G-y A=)
Jj=N-2:
w2 el N 41 5 Fn +o OFw -1 v Hw
Suw-n v~ T Buv - Auw -
+ 6,’7"—5—‘-11_—]—— Ruw -2
(N -2)
6,:, 1o g v+ . Z % vy OFN -1 +5" GHn
Fw - P - Do - -
FHw - M
+5y—l.@(:_:)+5:"'2@(: " + Qyrer — P - 1),
ik
- . 5Fk+m - ﬁk¢l ﬁHk+m—l
x‘;= k+m IR l;}*\ + 'L;+m‘l +
6u=0y Sy g Sy s Ak
+55“@+—I—ka>
)
ﬁF‘k*n 3 a:k+l 5 aHk+n-]
5 51;4!1 “'+5l|\/+l +5:+n—l +
B T Gw Fwy
Hi 1 . OHx
+5+l +i—+ ref — Yi)).
) E 50}(“ O(yrer = yuen)

(1) Forward simulator: Before solving the sensitivity
equations (17) and (18), the error terms need to be
generated. This can be done by driving IDNN with
OCNN for N step forward. This process is illustrated by

the forward simulator shown in Fig. 3, where Ais the

tapped delay operator defined in Fig. 2.

2 Mo
Y@ I S ¥
™ CNN ﬁ = [ Fry
Uiy ° o A Uy | IDNN lj—’
l—A I i_. o
;’(l) Tapped D»e!iyri)peramv J
A

Fig. 3. Forward simulator for GBTT

Starting from an initial conditions, ¥ %o the forward
simulator generates sequences of inputs, *m#2-%m, and
outputs, 5(2), §(3), fi(NH). These variables provides the

error terms (v,y— Y ) and %o for any k.

(2) Backward simulator : The sensitivity equations (17)
and (18), are to be simulated backward in order to

backpropagate the error terms. This can be performed



by the backward simulator shown in Fig. 4, where, the

summed advance operator Vis defined as a dual of the
tapped delay operator mapping from a sequence of vector

. - -
input { x5} where x Gen¥en--Xem), to a scalar

”
X = Zx(nk.k)
k=1 .

output defined as The backward simulator

can be shown to be the dual of the forward simulator,
which is then constructed by using the duality priznciple,
i.e, reversing the direction of arrows, interchanging the
summers and nodes, and replacing the tapped delay
operators with the summed advance operators.

Using the errors generated by the forward simulator,
the backward simulator runs backward starting from i/ =

e s i+l ; .
N. It generates the sensitivities 5" and 6. Noting that

J, is in the output node of OCNN, it is used as the
equivalent error in computing the weight parameter

adjustment in OCNN, a W',

OO = Jou)

OCNN

U+l
)7

Summed Advance Operator

Fig. 4. Backward simulator for GBTT.

The process of the GBTT training algorithm is
surnmarized as follows:
1)Set the weight parameters of OCNN with small
random numbers.
2)Set the reference output and initial state with random
numbers in the operation region of the plant.
3)Run the forward simulator for N step forward from i/
= 1
4)Using the operation result in step 3), run the
backward simulator backward from [/ = N to evaluate

the equivalent error 4, and the weight adjustment
vector A W'
5)Update the weight parameters in the OCNN by using
the average of the weight adjustment vectors found
in step 4).
6)Go to 2).
Training of OCNN is finished when the average
decrease of the cost function converges to a small value
for arbitrary reference outputs and initial conditions.
Since the training algorithm is essentially a gradient
descent method, the local minimum problem is a
possibility. However, this problem can be avoided by
starting with different initial weight parameters or with
different number of nodes in OCNN [13].
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2.5. Decomposition of Receding Horizon Optimal
Control for a Large Scale System

Let us consider a MIMO discrete-time dynamics of a
large scale system given by a general Nonlinear
Auto-Regressive Moving Average (NARMA) model:

Swen=K Yien Uipm). 19
where

T.

ye= (3}, 2, v 7T : output vector,

hnd .
wp= (b, 12, )T . inpat vector,

Yem=Cyw: Ye-p Y(k-n+p ): OUtpUt history matrix,
U =C e wp—pn U (4 m+1) )’ input history matrix,
=N T vector of input/output mapping.

Here, n and m are the appropriate orders for the
input/output mapping, and M is the number of
input/output pairs of the full system.

Design of an adequate optimal controller is difficult
when the system is of high dimension or the global
information of the system is not available. Therefore, the
full or global control problem is decomposed into several
local sub-system problems of low dimension.

Lets consider a large scale system shown in Fig. 5,

where the full system is decomposed into several

sub-systems by introducing interaction variables, Z'.

—®™1Sub-System 1 | — % ~—#1Sub-System M |—-—- =
I 1 A M
Uk I Yken Uk T Yiken
zdy . 24, interacton variable

XY

{nterconnection Network )
\

Fig. 5 Decompositon of a large scale system into
sub-systems

The i-th sub-system dynamics can be represented as
V=7 (Yiem, Uem)

= 7Y Uk m-Ziao)

where Y'ikm= {J’('k)a}’('k-l),»-»’J’;k-n+|)} R

(20

U'l"~'"|:{ufk),”(’k-l),~~->”('k~m+|)},
Z' (k.01 = {2{4), 21>+ Z(-0u1)} ,
doo. 7 .
Here, Y is the plant output scalar, %* is the control

input scalar and ,z;k)emNz 1S the interaction vector in Nz
space which represents interaction effects of other
sub-systems to the i-th sub-system by a nonlinear
function as:

Zik)éfi( Tiem, _Ij(k,nzl ), (1),
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where n, m, and o represent the delay orders for
output, input, and interaction variables, respectively.
Then, the following approximate dynamics can be
obtained by inserting equation (21) to equation (20) for
some large N3 and M3 as a sub-system model :

Yoy = £ s Uless) (22)

In the neural network approach, the sub-system
dynamics (22) can be approximated by training of a
neural network by increasing the number of input/outputs
for neural networks..

3. Power System Stabilization
3.1. Problem Description

The proposed NROC is applied in a power system to
enhance the power system stabilization. In a normal
operation of a generator, the turbine power keeps balance
with the electric air-gap power resulting in zero
acceleration and a frequency.

However, on occasion, disturbances or load perturbations

constant speed or

upset the balance, and the power system experiences
low-frequency oscillations. Thus our control objective is
to minimize the low-frequency oscillations in the electric
frequency with Kkeeping terminal voltage of generator
within limits. NROC is applied in the voltage control loop
of a generator to minimize the quadratic performance
index:

1M
= Ez;){Q((o(k D —Onr) + R(u(k))z}y (23)

where is the output frequency of the plant, u is the

supplementary excitation input and % is the normal
synchronous speed. The weight parameters are set as
Q=1.0 and R=0.04. This quadratic performance index not
only keeps the frequency output from fluctuating near the
reference frequency, the low frequency oscillation, but
The proposed NROC is
applied to a power system network shown in Fig. 6.

also limits the excitation input.

The power system consists of two power plants
connected with four parallel transmission lines: one plant
is a thermal unit and the other is an hydro unit.
Parameters of the generators are given in Table 1. Two
operating conditions, a normal and heavy loading
operating conditions for the first unit, are given in Table
2 and Table 3, respectively.

has sustained typical low-frequency oscillations. The

The study power system

control objective is to improve the system damping, ie,
to reduce the low-frequency oscillations in the outputs of
the first power plant by applying the proposed NROC.
The power system stabilizing control input is the
supplementary excitation signal applied to the first power
plant.
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Fig. 6 A neural network based control architecture for a
power plant

Table. 1. Parameters of generators

’ ' 4 Selfbase
Tdo D H xd xd xq xq [MVA]

Gen. #1| 40 | 1.0(446(1.25]1 0.6 | 09 | 0.6 150
Gen. #2| 63 | 1.0] 55094 04 [0.65] 0.4 150

Table. 2. Bus data for the normal loading conditon ( 0.8

p.u.)
Bug wr 7] Pe Qe Pi Qi
11 0997 [0.0475 120 -20 70 10
2 1.0 0.0 146 374 195 10

Table. 3. Bus data for the heavy loading operating condition

( 1.0 pu)
Bus| W 7 Pe Qe P (0]
0.993{0.0357 150 -20 100 10
1.0] 00 146 374 195 10

To study the low-frequency oscillation problem, the
state equation for the synchronous machine is written as

a third-order model. The state variables are (rotor

speed), & (torque angle),€s (voltage behind the transient
reactance), where the change in flux linkage of the field
The third-order model for a
synchronous machine connected to a network at the j-th
bus is [1]:

winding is considered.

dw 1

= 37 Tn = T4 D@y~ @)(T, = By 0.7, = P/ ) (24)
dé

E = wp(w -0, (W, =27f0,0=1) (25)
d‘?&: 1 (E _er_Q‘d_'_"é_)A(e/_v,cos(a_g))]

ar T, e (26)

where the variables are defined in [1]. In (26), dynamics

of ¢ is controlled by the field excitation voltage £m,



which is the output of a conventional exciter, and the
proposed NROC is to be attached to control the exciter
input. The generator powers always satisfy the algebraic
power balance constraint:

P(€,,v,8,8)+ P(v,0) =P .. (3,8,

0,(e,,v.8,0)+0,(v.8)=0um (0, 9), fori=1,2  (27)

where fo and @eare, respectively, the real and reactive

power of the i-th generator, v and Pmare the net

powers injected to the i1-th bus of the networks, and

£ and @ are the local loads on the i-th bus. The loads
can be modeled as nonlinear functions of system
variables. The real and reactive powers are then

presented as,

. 1o
P e 5,8.8,)= Lrsings -6,) + 25 =) a5 -6, )
X4 <KXy
. 'v,cos(8-8) vl(x cos’(8-8,)+x sin’(§-0
Q“(eq,v,,B,B,)=e“v‘co(, ) v, cos7( ) x,sin°(3-6,)) o
X} 2x)x,

i0

B,<v,,a>=m-(vl] (14 Bp &),

.\
Q,,<v,,6,>=Qm-[v‘—'J (14 By - A1), (29)
i0

M

P\'((—;, 'é) =2 vvi(gacos(8,-6,)+b,sin(0,-8,)),
b

~

04 (3 3)= 2 vvilgasin(0,-0,)= b, cos(6,-6,)),
’ (30)

where the parameters @ Fand &b are given to
represent the load characteristics and the line admittance
from i-th bus to k-th bus, respectively.

Typical IEEE govemor and turbine models [14] are

used; TGOV1 for the first generator and IEEEG2 for the
second generator in the study power system. The IEEE
exciter and voltage regulator model EXST1 is used for
both generators.

3.2. Design of NROC

A paradigm for the neural networks in NROC is
chosen by trial and error: IDNN and OCNN have one
In IDNN, the input
laver has seven nodes: four for output history, and three

hidden layer with 40 nodes each.
for input history. The corresponding OCNN has seven
nodes in the input layer: four for output history, two for
input history, and one for reference output.

The proper choice of a sampling period is very
important. In this case, the frequency band of the plant
output in the low frequency oscillation is about 172 [Hz].
Training patterns for IDNN are obtained with time step
size of 0.04 [sec] in the simulation of the power system.
This sampling time allows at least twenty sample points

in one cycle of low-frequency oscillation whose

ol S#2F XMool 28 MAANE cHYstel Babdo) Ha g
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frequency band is less than 1.25 [Hz]. It takes about 20
minutes in an IBM-PC 486 for the training of IDNN.

3.3. Simulation and Discussion

Two cases of disturbances are considered which are
typical in a real power system operation: one is a line
fault and the other is an abrupt load level change. Two
operating conditions for the unit one are considered,
normal loading condition for 0.8 [p.u.] and heavy loading

condition for 1.0 fp.u] .

Power system is controlled with three different options:
1) there is only the conventional voltage regulator; 2) the
conventional voltage regulator with the conventional PSS
(STAB4 (14]); and 3) the conventional voltage regulator

with the proposed NROC.

(1) Case 1- Line Fault In this case the tie-line
admittance between the two generators changes from
100% to 75% at t=1.2 seconds undergoing a transient
state when the 25% of line admittance is grounded at
half point and cleared at t=185 second. This fault
imitates one line outage when the tie line consists of
parallel four line elements in Fig. 6. Fig. 7 , Fig. 8 and
Fig. 9 show trajectories of the speed deviation and
terminal voltage deviation of the first generator due to
the line fault when the power system is in the normal
loading and heavy loading conditions. Both the
conventional PSS and the proposed NROC effectively
damp the oscillation of voltage deviation. However, it is
shown that the initial swing of voltage deviation with
conventional PSS is larger than that with proposed
NROC.

Speed-dev. of the 1-st Gen. ( 0.8[p.u.])

0.2
[Hz]

-0.4 x .

0 4 8 12 1
Time(Sec]

| WINoUPSS — STABS  — NROC

Fig. 7 The speed deviation of the first generator due to the
line fault under the normal loading condition.
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Speed-dev. of the 1-st Gen. ( 1.0[p.u.])

0.8
[Hz] | o
0.4 : IR
0
-0.4 — : :
Ot viseq 2]
Lo without PSS — gTAB4 — NROC (

Fig. 8 The speed deviation of the first generator due to the
line fault under heavy loading condition.
Voltage-dev. cf the 1-st Gen. (1.0 [p.u.])
0.15
[p.u]
0.4

0.05 R : :

=
<
=<
o
q

{

0.4
0.1 . . —
0 2 4
Time[Sec]___n - -
witoutPS§  — STAB4  — NROC |

Fig. 9 The voltage deviation of the first generator due to the
fine fault under heavy loading condition.

(2) Case 2- Load changes: This simulates a case of
disturbance when there is 5% stepwise changes. The
changes are taken place at t=1.2 {sec] with 5% increase,
at t=37[sec] with 5% decrease, at t=5[sec] with 5%
decrease, and at t=6.3[sec] with 5% increase. Fig. 10 ,
Fig. 11 and Fig. 12 show the trajectories for the speed
deviation and the terminal voltage deviation of the first
generator due to load change disturbance when the power
system is in the normal loading and in the heavy loading
conditions. The conventional PSS keeps the oscillation
small but have a large initial peak in the speed deviation.
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Moreover, It generates very large voltage deviation.
However, the proposed NROC keeps the oscillation small
with small peaks. It is shown that the performance of
the NROC is better than the conventional PSS in the
case of load change disturbance.

Speed-dev. of the 1-st Gen. ( 0.8[p.u.})

(Hz]
0.4

~0.5

LI T T

0 4 8 12 1
Time[Sec]

—_— e

| witout PSS —NROC |

|
o
[ e]

Fig. 10 The speed deviation of the first generator due to the
load change under the normal loading condition.

Speed-dev. of the 1-st Gen. ( 1.0[p.u.])

[Hz]

~0. 4]
"O . 8 T —T T
0 4 8 12 1
7 Time[Sec]
_ WlostPSS  — STAB4 — NROC |

Fig. 11 The speed deviation of the first generator due to the
load change under the heavy loading condition.
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[ XVA!
Q.04

0.0M

-0.02

-0.05

-0.08 : -
0 4 8 1
~_ TimefSec)
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Fig. 12 The voitage deviation of the first generator due to
the load change under heavy loading condition.

4. Conclusions

This study considers an application of neural networks
to the receding horizon optimal control (NROC) problem
for power systems. A decentralized approach for local
system control by neural networks was proposed in
which the complex power system was to be controlled by
local system controllers that need only the local
information. For each local system, a receding horizon
optimal control law was implemented by two artificial
neural networks: Identification Neural Network (IDNN)
and Optimal Control Neural Network (OCNN). In
training OCNN, the Generalized Backpropagation Through
Time (GBTT) algorithm was
quadratic cost function. The proposed NROC was applied

used to minimize a

to a power system to improve the damping of
oscillation. The proposed NROC
demonstrated a favorable control performance compared to

low~frequency

a conventional power system stabilizer for various
operating conditions and fault types.
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