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A study on the Adaptive Neuro Controller
with Chaotic Neural Networks
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Abstract

This paper presents an indirect adaptive neuro controller using modified chaotic neural networks(MCNN) for
nonlinear dynamic system. A modified chaotic neural networks model is presented for simplifying the traditional
chaotic neural networks and enforcing dynamic characteristics. A new Dynamic Backpropagation learning method is
also developed. The proposed MCNN paradigm is applied to the system identification of a MIMO system and the
indirect adaptive neuro controller. The simulation results show good performances, since the MCNN has robust
adaptability to nonlinear dynamic system.
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|. Introduction

Recently, the chaotic neural networks(CNNs) having
chaotic characteristics like biclogical neuron have been
studied in application to nonlinear dynamic systems
because of it’s highly nonlinear dynamic characteristics.
Biological neurons generally have chaotic characteristics
permanently or transiently. The chaotic responses of
biological neurons have been modeled quantitatively by
many researchers. The primitive model was the
Hodgkin Huxley equation. Caianiello and Nagumo
Sato modified this model to make chaotic neural
networks.[1,2] Aihara et al. proposed a discrete time
model with

continuous output, and
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applied this model to chaotic neural networks.[3] They
showed that the neural networks could be applied to
solve optimization problems such as traveling salesman
problem(TSP). The effects of chaotic response have
not verified yet by analytical methods. The chaotic
characteristics of neuron model generally gives adverse
effects on optimization problems, but the transient
chaos of neuron model could be beneficial to overcome
the local minimum problem. Aihara proposed that the
transient chaotic characteristics of neuron could be
helpful for global optimization.[4] Even though some
modifications on chaotic neuron model, those previously
proposed chaotic neuron models are still complicate, and
need more dynamic characteristics in neuron itself and
learning algorithm.

Nguyen and Widrow[5], Narendra and Parthasarathy[6]
proposed neural
networks. Neural Networks identifier in those papers

indirect control method wusing two



12/ 7e" AFFE o1 HgAolol BY AT

requires pretaining as an inverse model of the system.

Those neural networks controllers are not adapted
immediately due to uncertainties or disturbances of the
system parameters. To overcome these limitations, we
proposed a direct adaptive control strategies using
chaotic neural networks.[7] The structure of the paper
consisted of the fixed PD controller and the chaotic
neural networks.

Since conventional CNNs' structure and learning rule
does not proper to system identification and control
application, a modified chaotic neuron model is
presented to simplify the model and to enforce dynamic
characteristics. We also modify the learning rule with
dynamic backpropagation algorithm for the proposed
MCNN. This structure is very compatible with highly
in the neural network

Chaotic neural networks

nonlinear dynamic system
structure and learning rule.
substituted with

networks and recurrent neural

could be feed forward neural

networks because of
complex nonlinearity in chaotic neurons. In this paper,
the proposed MCNN paradigm is applied to the system
identification of a MIMO system and an indirect
adaptive neuro controller. The simulation results show
good performances, since the MCNN has the robust

adaptability to nonlinear dynamic system.

Il. Modified Chaotic Dynamic neural networks

The conventional chaotic neuron model, suggested by
Nagumo and Sato[3], has two different type of inputs:
one from same layer and the other from extraneous
layer, and also has a refractory term, which is self
feedback. The effectively
dynamic
controlling as one of three terms, which affect output

refractory term performs

characteristics  through  repeated signal

of the chaotic neuron. The neuron model is shown in
Fig. 1.
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Fig. 1. Chaotic neuron unit

Generally, the dynamics of the i th chaotic neuron in

networks at discrete time k+1 is

y,(k+1)= fN[Z Sy K1 (k-

Jj=1 r=0

m k
+Zw§ ZOK;,h,(yi(k—r»
Jj= r=

k
—o- Y Klg(x,(k=r)-6,]
< (1)

F R
where /() is a sigmoid function, Y5 and i are

coupling coefficients(weights) from the Jth external
neuron and the Jth feedback neuron to the ith

neuron, respectively. L%=7) is the strength of the Jth

externally applied input at time k—r. Zik=1)) i

a transfer function of the axon connected on the Jth

chaotic neuron, and gixj(k-r)) is a refractory

function of the 7th chaotic neuron at time k-—v,
usually an identity function. The # and " are the

numbers of external and feedback inputs applied to the
; K K’
chaotic neuron. The decay parameters, &, m, and

Krr are the damping factors of the external, feedback,

and refractoriness, respectively. In this paper, we

assumed the same values of decay parameters, K.

The 9 is the threshold of the ith chaotic neuron.
The constant &

refractory. (0<a)

is a positive decay parameter of

n m
x(k+ D) =K - x,(k)+ Y wi 1,00+ > with, (fyy (x, (k)
=1 Jj=1

—ag; (fy (x;(k))) - 6,(1 - K) (2)

In order to apply the continuous Hopfield neural
network structure to the recurrent inputs, Aihara et al.
defined the symmetric structure of recurrent weights as

WR =wk wR=0 . )
if jis Wi . This neural network uses two kinds

of learning rules in the -same network. Since the
structure of that model decreases the efficiency of
learning and the dynamic characteristics of networks,
this model is not appropriate for modeling dynamic
systems.

Since the chaotic neuron model, which was proposed

by Aihara, is too complicate, simplification is needed for
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reducing the computation time. This paper presents a

chaotic dynamic neuron unit with same chaotic

characteristics. The og; (fw(x; (k) term in equation

> by (5, ()
(2) is overlapped in the term of /Z=l wihy iy (x

so the 0g;(/n(3:i(k)) is abbreviated in
this modified model. For more

when ! =j,
simplification, the
threshold term, Gi(l—K)' is defined as zero, and the

nonlinear function, hi ('). is defined 1 . Fig. 2 shows the

modified chaotic neuron unit.
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Fig. 2. Modified Chaotic Dynamic Neuron Unit

Then the reduced form of Eq. (2) is

(k4D =K - x,()+ D w4 ,(k)+ D wi y,(k)
=1 =1 (

3)
itk +1)= fy[x; (k+1)] (4)
Iaulxitk+ D)= ——o——
i 1+€ ’(k% (5)

where € is slope of sigmoid function.
To increase dynamic characteristics, the nonsymmetric

weights are applied to recurrent inputs such as
R R _R

Wij # Wjis Wy 7&0. The chaotic neuron sums three
inputs: the refractoriness, K - X (k). the activation,

n

<w 4%, and the recurrent input,
through the

Sowi frixik). The

summation passes nonlinear sigmoid

function.

. Dynamic Backpropagation Learning

Although the chaotic neuron model inherently has

robust dynamic characteristics, the traditional chaotic
neural networks(CNN), proposed by Aihara et al
decrease the dynamic characteristics in the structure
and the learning rules. They used the backpropagation
learning rule for the forward inputs between layer and
used the time progressing learning rule(the continuous
Hopfield learning algorithm) for the recurrent inputs in
inter layer. These learning rules may be appropriate to
the static patterns but not to the dynamic system
applications such as forecasting, identifications, signal
processing and dynamic system control. In this paper,
the structure of CNN is modified, and the new learning
rule is proposed for enhancing the dynamic
characteristics.

Modified chaotic neural network is a globally coupled
neural networks. Fach chaotic neuron unit is globally
coupled with present and past outputs of chaotic
neuron units. Modified chaotic neural networks in Fig.
3 have two different coupling coefficients (weights) for
both directions among the neurons of interlayer, and
forward direction between layers. This connection
weights in interlayer is defined as nonsymmetric form,

OR OR . OR IR R IR
Wi EWh, Wy #0 and Wi EWjis Wi ¢0.

This structure is similar with fully recurrent neural
networks.
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Fig. 3. Modified Chaotic Neural Network Structure

Consider fig. 3. u; (k) is the Ith input for each discrete

H
time &, Sj (k) is the weighted sum of inputs and
refractory input to Jth neuron in hidden layer, %j (k) is
the output of Jth neuron in hidden layer, Kis

refractory parameter of chaotic neuron, and NG s

. . . . 4 IR
nonlinear sigmoid function. W and W' represent the
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weight vector between input and hidden layer and
inter connecting weight vector in the hidden layer.

The weighted sum of J th neurons in hidden layer is as

follows:
SH (k)= z u(k)+2

The Jth neuron's output of hidden layer is as follow:

x;(k) = (S} (K)] (7)

x,(k=)+K S (k-1)
(6)

Consider Fig. 3, Y »(K)is Pth output of output neuron

0
for each discrete time & SP *) is the weighted sum

of inputs and refractory input to Pth output neuron in

output layer, */®is the output of Jth neuron in

hidden layer, K is refractory parameter of chaotic
neuron, and N0 is nonlinear sigmoid function, W

R . .
and WO represent the weight vector between hidden
and output and inter connecting weight vector in the

output layer. The weighted sum of Pth neurons in
hidden layer is as follows:

SO (k)= Z w, j(k)+z Ry (k=1)+ kSO (k - 1)

(8)

v, (k)= fy[S9 ()] (9)

Using Eq. (6)(7),
output layer(Eq. 8) can define as follows:

the weighted sum of neuron in

S"(k)—z fN[Z,,,(k)+Z x,(k—1)

+KST (k-1)]+ glngy,(k—1)+KS,?(k—1) (10)

= ZW,,,fN[Z i (k) + ZW]RfN[Zu (k=1

+2w Lk=2)+ kST (k- 2)]] (11)
S WS LS Wiy (k=14 3wy, (k=2)
r= J'=
+kS? (k - 2)1+ KSS (k- 1)

O, (k) = NF (u(l),x(I), y(I); I < k) (12)

0, (k)

where is the Pth output of chaotic neural

network, NF() is a nonlinear function which represents

a nonlinear dynamic mapping chaotic neural networks.

This neural network model in Eq. (12) is a globally
coupled with present and past inputs and outputs of all

neurons. Therefore, this model could simulate any

complex nonlinear dynamic system.
The dynamic learning process may be formulated as:

W(k+1)=W(k)-n-V, E(k) (13)

where W(k)is an estimated weight vector at time &

and Mis a step size parameter, which affects the rate

of convergence of the weights during learning.

The error index E() should be defined as

LS T () — v ()P
E(k)-;igl[yi (k)= yi" (k)] (14)

%ée(k)

d .
where €(k)=y{ )=y (k) is a learning error of 7th
neuron between the desired and network output at

time k.
The gradient of error index with respect to an arbitrary

weight vector W is represented by

V., E(k)=~e(k)V ,y" (k) =—e(k)V ,0(k) (15)
where O(k) is output vector of neural network, and

Y (ky=0(k) in case simple identification task. The
V.,.Ok)  with

weights, interconnecting of output, interconnecting of

output gradient respect to output

hidden, and input weight in Eq. (15) are given by

d0(k)

= FLISOMNA0 (K
=S O ® .
30(K) _ 1 co

S/(k A k

ot = VIS G4 @ .
e R WACIORARHCI OO
ao(k)_ < 4 (o] . (4] . ’ H X 4
WA DR AT ORI
where
A2 = 0,0+ W £y (S2(k=1) + K142 (k=)
47 0)=0, (20)

AP (k) = O,(k =) +[WOR £ (2 (k =1) + K142 (k—1)
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475 (0)=0 (21)
A (k) = x,(k =)+ [w £3(S] (k=1)+ K] A" (k1) '
4°(0)=0 (22)
A0 = u, () +[wi [y (S] (k=1))+ K- 4] (k ~1) '

4;(0)=0 (23)

’
where fN() is the differential of fN()
The globally asymptotical stability condition of
MCNN is derived using M.Gupta’s papers[8 10],

Example 1: This example is identify MIMO plant that
2
1+yp2 (k)

is described by the equation
ypl(k)
Yplk+1) _ + u; (k)
Yo+ )| 1y 0y, 0 |7 |y k)
1+ v (k) (24)
u, (k) _ sin(27mk / 25)
where |uy(k)| | cos(2mk /25) .

The results in Fig 4 show the identification results
using the proposed dynamic backpropagation learning
method in Eq (16) (23). In this example, one MCNN
is used to identify the coupled nonlinear MIMO
dynamics. The structure of MCNN consists of two

inputs for #i1(k), ”z(k)respectively. 8 neurons in

hidden layer, and 2 identified outputs for Yn (k),
yia (k)

refractory rate is 0.15.

The learning rate is selected as 0.3, and
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Fig. 5. Normalized Error with iterations

[V. Learning control scheme with MCNN

An approach for indirect adaptive control using
modified chaotic neural networks is presented. The
indirect adaptive control system consists of system
identifier and controller, The system identifier with a
chaotic neural network, called chaotic neural network
identifier (CNNI),
providing unknown plant information to the controiler
with a chaotic neural network. Both neural networks

identifies an unknown plant for

identifier and controller use dynamic backpropagation
identifier, the generalized dynamic
algorithm could be adopted for
CNNI In controller, the
relationship between the activation value of plant and
the plant output should be constructed for adjusting the
weights of a chaotic neural network controller(CNNC)

algorithm. In
backpropagation
adjusting  weights of

in figure 6.
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Fig. 6. Structure of Indirect Neuro Adaptive Controller

The gradient of error index with respect to an arbitrary

weight vector W of controller should be redefined. The
dynamic learning process for CNNC may be formulated
as-

where W (k) is an estimated weight vector for controller

at time &, and Tlcis a step size parameter for CNNC
which affects the rate of convergence of the weights

during learning. The error index E (k) should be
defined as:
LSy (k) — v ()P
E (k) =3 20y () -y, (k)] 26)
=3 Z ek
where #is number of output in plant, and

eci(k)=yir (K)-yi(k) is a learning error between the

reference model and the plant output at time k. The
gradient of error index with respect to an arbitrary

weight vector W is represented by
VwE (k) =—€ (K)Vy y(k) =—€ ()Y , ) YKV (k) (57

=€, (k)V 4y y(k)V y, O (k)

where € c(k) is learning error vector at time &, and the

plant input vector u(k) is defined as the output vector

of CNNCO“ (k)
Since the plant is normally unknown, the sensitivity

term Yu®)P®) could not be defined. After sufficient
learning procedure, the learning error of CNNI could

approximate to zero. Progressing the learning procedure
of CNNI, the outputs of CNNI is close to the plant

y(k) = y" (k)
be redefined as

Vu(k)y(k) = Vu(k)ym (k)= Vu(k)o(k)

output, ie., The sensitivity term could
(28)

200(k)

where ¥ (k)=0(k) anqg ou(k) |

The jacobian matrix could be defined as

Vu(k)O(k) =

)= 30,(k) _ 30,(k) & 382 (k) dx,(k) S, (k)
Y du; (k) SP (k)% Ix, (k) SY (k) u (k) (29)
where Jij (k) is an element of jacobian matrix which

represents the sensitivity of plant oufput for input.
Consider Eq. (6) (9), the partial derivatives can be

defined as
k) _ o an(k):wf.
I, (k) P oupk) T
d0;(k .
Jy0)=5 Ek;—fN(S"(k»Ew  Fu(SE

Eq. (27) could be redefined as

V. E (k) =€ (k)J (k)Y ,c O° (k) (31)

Using negative gradient in (31), the weights for CNNC
can be adjusted in eq. (25). The equations (16) (23)
define the dynamic backpropagation learning algorithms
for CNNC.

Example 2: The plant is described by the difference
equation(6]

Yo
1+ 7 (k) (32)
The reference model is described by difference equation
y" (k+1)=0.6p" (k) +r(k)
where
r(k) =sin(2nk / 25) + sin(27k /10)

yP+1)= u® (k)

(33)

outputs

0 100 200 300 400
sambples

(a) After 10 iterations
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Fig. 7. Response of Controller
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Fig. 8. Normalized Error with iterations

The results in Fig. 7 and 8 show the indirect
using the proposed
dynamic backpropagation learning method in Eq. (16)

(23) for CNNI and Eq.(30) and (31) for CNNC. The
structure of MCNNI consists of two inputs, 7 neurons
in hidden layer, and 2 outputs, and MCNNC has also
same structure. The learning rates are selected as 0.3,
and refractory rate is 0.15 for the CNNI and CNNC.
Since  MCNN has fast adapting characteristics, the

adaptive neuro control resulfs

CNNI identifies the plant model as on line learning
method.

V. Conclusion

In this paper, we presents an indirect neuro adaptive
controller which consists of two MCNNs: a MCNNI
and a MCNNC. Traditional CNN was modified to
simplify the enforce the dynamic

model and to

characteristics, We also modified the learning rule with
dynamic backpropagation algorithm for the proposed
MCNN. The performance of MCNN was tested for two
examples: one of them was a nonlinear MIMO system
identification and, the second was an indirect neuro
adaptive controlier. The simulation results show good
MCNN has the
adaptability to nonlinear dynamic system.

performances, since the robust
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