• Title/Summary/Keyword: backfill pressure

Search Result 206, Processing Time 0.027 seconds

Lateral Earth Pressure with The Shape of Narrow Space with Backfill (좁은 공간의 형상에 따른 되메움 토압에 관한 연구)

  • Huh, Kyung-Han
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.1
    • /
    • pp.89-96
    • /
    • 2008
  • The study, with regard to unsymmetrically inclined backfilled wall, was intended to estimate the lateral earth pressure, develop the equation for lateral earth pressure and eventually identify the mutual behavior, based on the modified Kellogg theory, while changing the width between the walls, wall angle, relative density and wall friction angle. To verify the geostatic pressure obtained from the study, the results in the wake of 62 kinds of model tests performed were compared and evaluated with the behaviors based on theoretical equations. As a result, the wall inclination angle was found to be the factors affecting the earth pressure the most, when both walls were inclined unsymmetrically. And the narrower the backfill space and the larger the wall inclination angle to the horizontal level, the greater the effect of the wall friction. The equation considering the wall friction reaction indicated the value, which was closer to the actually-measured earth pressure, and when the width between the warts was narrow, the arching effect appeared to be great, thereby indicating the difference between the measured earth pressure, theoretically calculated earth pressure and the geostatic pressure proved to be insignificant.

AN ANALYSIS OF THE THERMAL AND MECHANICAL BEHAVIOR OF ENGINEERED BARRIERS IN A HIGH-LEVEL RADIOACTIVE WASTE REPOSITORY

  • Kwon, S.;Cho, W.J.;Lee, J.O.
    • Nuclear Engineering and Technology
    • /
    • v.45 no.1
    • /
    • pp.41-52
    • /
    • 2013
  • Adequate design of engineered barriers, including canister, buffer and backfill, is important for the safe disposal of high-level radioactive waste. Three-dimensional computer simulations were carried out under different condition to examine the thermal and mechanical behavior of engineered barriers and rock mass. The research looked at five areas of importance, the effect of the swelling pressure, water content of buffer, density of compacted bentonite, emplacement type and the selection of failure criteria. The results highlighted the need to consider tensile stress in the outer shell of a canister due to thermal expansion of the canister and the swelling pressure from the buffer for a more reliable design of an underground repository system. In addition, an adequate failure criterion should be used for the buffer and backfill.

Pseudo-dynamic approach of seismic earth pressure behind cantilever retaining wall with inclined backfill surface

  • Giri, Debabrata
    • Geomechanics and Engineering
    • /
    • v.3 no.4
    • /
    • pp.255-266
    • /
    • 2011
  • Knowledge of seismic earth pressure against rigid retaining wall is very important. Mononobe-Okabe method is commonly used, which considers pseudo-static approach. In this paper, the pseudo-dynamic method is used to compute the distribution of seismic earth pressure on a rigid cantilever retaining wall supporting dry cohesionless backfill. Planar rupture surface is considered in the analysis. Effect of various parameters like wall friction angle, soil friction angle, shear wave velocity, primary wave velocity, horizontal and vertical seismic accelerations on seismic earth pressure have been studied. Results are presented in terms of tabular and graphical non-dimensional form.

Analysis of influence factors on the seismic earth pressure acting on gravity walls (중력식 옹벽에 작용하는 배면 동적 토력의 영향 인자 분석)

  • 윤석재;김성렬;김명모
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.09a
    • /
    • pp.75-82
    • /
    • 2002
  • The Mononobe-Okabe method is generally used to evaluate the dynamic earth force for the seismic design of retaining walls. However, the Mononobe-Okabe method does not consider the effects of the dynamic interactions between the backfill soil and the wall. In fact, a phase difference exists between the inertia force and the seismic earth pressure. In this study, shaking table tests were peformed on gravity walls retaining dry backfill sand to analyze the influence of several parameters (the unit weight of the wall, the input acceleration and base friction) on the development of the seismic earth pressure. The experiments revealed that the magnitude of the inertia force mobilized during seismic loading affected the seismic earth pressure. The difference in the phase angles between the inertia force and the seismic earth pressure was retained at 180 degrees before the wall failed but its magnitude changed significantly as the wall began to fail.

  • PDF

Estimation of Nonlinearly Distributed Active Earth Pressure on Rigid Retaining Wall (강성옹벽에 작용하는 비선형 주동토압의 산정)

  • 백규호
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.10a
    • /
    • pp.443-450
    • /
    • 2002
  • It is known that the distribution of the active earth pressure against a translating rigid wall is not triangular, but nonlinear, due to arching effects in the backfill. In the present paper, a new formulation for calculating the active earth pressure on a rigid retaining wall undergoing horizontal translation is proposed. It takes into account the arching effects that occur in the backfill. In order to check the accuracy of the proposed formulation, the predictions from the equation are compared with both existing full-scale test results and values from existing equations. The comparisons between calculated and measured values show that the proposed equations satisfactorily predict both the earth pressure distribution and the total active earth force on the translating wall.

  • PDF

Nonlinearly Distributed Active Earth Pressure on n Translating Rigid Retaining Wall : I. Formulation (평행이동하는 강성옹벽에 작용하는 비선형 주동토압 : I. 정식화)

  • 백규호
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.1
    • /
    • pp.181-189
    • /
    • 2003
  • The active earth pressure against a rigid retaining wall has been generally calculated using either Rankine's or Coulomb's formulation. Both assume that the distribution of active earth pressure exerted against the wall is triangular. However, many experimental results show that the distribution of the active earth pressure on a rigid rough wall is nonlinear. These results do not agree with the assumption used in both Rankine's and Coulomb's theories. The nonlinearity of the active earth pressure distribution results from arching effects in the backfill. Several researchers have attempted to estimate the active earth pressure on a rigid retaining wall, considering arching effect in the backfill. Their equations, however, have some limitations. In this paper, a new formulation for calculating the active earth pressure on a rough rigid retaining wall undergoing horizontal translation is proposed. It takes into account the arching effects that occur in the backfill.

Deformation Characteristics of Subgrade Materials and Soil at Abutment (노상토 및 보조기층 재료의 변형특성)

  • Song, Chang-Seop;Lim, Seong-Yoon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.52 no.3
    • /
    • pp.105-111
    • /
    • 2010
  • It is very important to select carefully backfill materials and build for the structural integrity of abutment in bridge. In general, backfill materials of unbound crushed stones (SB-1) are used to provide the safety of abutment structure and to reduce differential settlement around abutment that is significantly related with performance of road pavement under working conditions. In this study, to evaluate the compatibility of backfill materials at abutment and to develop the abutment design program, i) basic properties of subgrade soils in Korea, ii) evaluation of deformational characteristics of backfill materials from RC/TS tests, cyclic TX tests and Creep tests were accomplished.

Active Earth Pressure behind Rigid Retaining Wall Rotating about the Base (저점을 중심으로 회전하는 강성옹벽에 작용하는 주동토압)

  • 백규호
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.8
    • /
    • pp.193-203
    • /
    • 2004
  • Arching effects in backfill materials generate a nonlinear active earth pressure distribution on a rigid retaining wall with rough face, and arching effects on the shape of the nonlinear earth pressure distribution depends on the mode of wall movement. Therefore, the practical shape of failure surface and arching effect in the backfill changed with the mode of wall movement must be considered to calculate accurate magnitude and distribution of active earth pressure on the rigid wall. In this study, a new formulation for calculating the active earth pressure on a rough rigid retaining wall rotating about the base is proposed by considering the shape of nonlinear failure surface and arching effects in the backfill. In order to avoid mathematical complexities in the calculation of active earth pressure, the imaginary failure surface composed of four linear surfaces is used instead of the nonlinear failure surface as failure surface of backfills. The comparisons between predictions from the proposed equations and existing model test results show that the proposed equations produce satisfactory predictions.

Vertical Earth Pressure on Buried Pipes in Ditches due to Fills (강설매설관에 작용하는 되메움토 연직토압)

  • Park, Sangwon;Do, Jongnam;Jung, Jongju;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.9 no.1
    • /
    • pp.11-16
    • /
    • 2008
  • In this paper, vertical earth pressure by CANDE program is compared with that by some equations such as the equation by Janssen, Marston, Spangler, and Handy to calculate vertical earth pressure with respect to several factors acting on a rigid buried-pipe filled cohesionless soil. As a result of comparative analysis of vertical earth pressure with each equation, primary factors are affected by backfill width, backfill depth and wall friction. Moreover, vertical earth pressure is linearly increased with backfill depth and width from results of the finite element method. Handy's Equation is reasonable for finite element method while Marston equation is overestimated in case of the design of buried-pipe and box.

  • PDF

Numerical Analysis on Behavior of Cantilever Retaining Walls (캔틸레버 옹벽의 거동에 대한 수치해석적 연구)

  • Jang, In-Seong;Jeong, Chung-Gi;Kim, Myeong-Mo
    • Geotechnical Engineering
    • /
    • v.12 no.4
    • /
    • pp.75-86
    • /
    • 1996
  • Current methods to estimate the earth pressure for retaining wall analysis are based on Rankine or Coulomb approaches, in which the soil mass behind wall is assumed to reach to failure state with sufficient lateral movements. Some of recent research works carried out by field measurements reveal that the active earth. pressures by Ranking or Coulomb method are underestimated. It means that the lateral movements of wall and soil would not be mobilized enough to reach the failure state. In this study, the finite element method with Drucker -Prager model for soil is employed to investigate the behavior of concrete cantile,tier retaining wall, together with the influence of inclined backfill. The results indicate that the earth pressures on the retaining wall are strongly related to the mobilized lateral movements of wall and soil and that Ranking and Coulomb methods underestimate the resultant earth pressures and the increasing effect on earth pressure by inclined backfill. Based on this study, a simplified method to determine to earth pressures on cantilever retaining wall with horizontal backfill is proposed.

  • PDF