• Title/Summary/Keyword: back-EMF

Search Result 406, Processing Time 0.025 seconds

Speed Control of DC Motor used in hand robot (핸드로봇에 사용되는 DC 모터의 속도 제어)

  • Hwang, Junsik;Kim, Sungmin
    • Proceedings of the KIPE Conference
    • /
    • 2019.07a
    • /
    • pp.366-367
    • /
    • 2019
  • 산업기술의 정밀화, 자동화가 진행됨에 따라 로봇 산업이 발달하게 되고, 로봇에 주로 사용하는 DC 모터 제어의 성능이 더욱 중요해지고 있다. 로봇에 적용되는 소용량 DC 모터의 경우, 전기자 권선의 인덕턴스가 작고 조항이 상대적으로 크다. 저항이 상대적으로 큰 DC 모터의 경우 저항에 흐르는 전류에 의한 전압 강하 성분이 속도에 비례하는 역기전력(Back-EMF)에 비해 무시할 수 없고, PWM 전압에 의한 전류맥동이 커서 평균전류 샘플링이 어렵다. 본 논문에서는 DC 모터의 전기적 모델을 기반으로 속도 제어기의 출력 전압을 결정하는 방법을 제안하였다. 핸드 로봇에 제안된 방법을 적용하여 속도 제어기의 특성을 확인하였다.

  • PDF

Parameter Extraction of DQ-Axis Inductance and Back-EMF Constant For IPM Type Motors Based on Nonlinear Finite Element Analysis (비선형 효과를 고려한 IPM형 전동기의 DQ축 인덕턴스 및 역기전력상수 파라미터 추출)

  • Choi, Hong-Soon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.3
    • /
    • pp.519-523
    • /
    • 2007
  • In this paper, we propose a precise parameter extraction of interior permanent magnet (IPM) motors based on finite element analysis. For the calculation of the two-axis inductances Ld and Lq, the slotting effect and cross magnetization due to torque angle are considered. It is examined that back electro-motive force (BEMF) constant is affected by the magnetic saturation in different ways dependent on motor types. Numerical analyses and some measurements are performed for a spoke type and a flux barrier type IPM motors

BLDC Motor Model with Non-Linear Back-EMF Wave (비선형 역기전력 파형을 고려한 BLDC 모터 모델)

  • 이상용;강병희;채영민;목형수;최규하;김덕근;류재성
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.22-25
    • /
    • 1999
  • A brushless DC motor has the high quality of torque output and silence, has been more widely used in industrial area. As the driver and controller of BLDC motor have been more complicated and precise, simulation method has been much used in motor design. And the output characteristics of BLDC motor is determined by the waveform of BACK-KMF in instinct. But because the conventional model of BLDC motor is obtained by approximation of real nonlinear waveform to ideal trapezoidal waveform, the error is occurred in simulation result. Thus in this paper, for the correction of this error in simulation, the model of real nonlinear waveform considered is proposed, and the simulation result is obtained in case of three-phase, four-poles Y-connected, surface mounted permanent magnet BLDC motor.

  • PDF

A position Detector of Permanent Magnet Step Motors (영구 자석형 스텝모터의 위치 검출)

  • 원종수;정훈
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.36 no.10
    • /
    • pp.703-712
    • /
    • 1987
  • A position detection method for 2 phase bifilar permanent magnet step motors is proposed. The back emfgenerated on 2 phase windings by rotor permanent magnet is calculated using motor terminal voltage and current by analog circuit, and the rotor position output is obtained from tese back emf signals through some logical manipulation circuit. This position detector functionally acts like a 2 channel optical incremental encoder, and it is also shown by experimental results that it works well over wide range of speed or under resonant condition where the rotor rings around the detent position. Its resolution is twice of the number of steps per revolution. Bu software implemented on micro-processor, the reliability of position output is enhanced, detecting and correcting error dut to external and/ or internal noise.

A Study on Characteristic of Spindle Motor by Unsymmetric Magnetization Distribution in Permanent Magnet (비대칭 착자에 따른 스핀들 모터 특성에 관한 연구)

  • Park, Jae-Young;Bae, Jae-Nam;Kim, Ki-Chan;Lee, Ju
    • Proceedings of the KIEE Conference
    • /
    • 2008.10c
    • /
    • pp.38-40
    • /
    • 2008
  • Distribution of Permanent magnet used in the spindle motor on the ODD is arranged by magnetizer. In general, permanent magnet is putted between yoke and back yoke of magnetizer so that symmetric magnetization distribution. But the magnet has unsymmetric magnetization distribution because of eccentricity of the yoke in mass production. So, in this paper we discuss the effect of asymmetric magnetization distribution on back EMF and cogging torque of the spindle motor.

  • PDF

Effect of Slot Opening on the Cogging Torque of Fractional-Slot Concentrated Winding Permanent Magnet Brushless DC Motor

  • Yan, Jianhu;Zhang, Qiongfang;Feng, Yi
    • Journal of Magnetics
    • /
    • v.21 no.1
    • /
    • pp.78-82
    • /
    • 2016
  • Cogging torque will affect the performance of a permanent magnet Brushless DC Motor (BLDCM), thus the reduction of cogging torque is key for BLDCM optimization. In this paper, the phase shifting of cogging torque for a fractional-slot concentrated winding BLDCM is analyzed using the Maxwell tensor method. Moreover, a 9-slot 10-pole concentrated winding BLDCM driven by ideal square waveform is studied with the finite element method (FEM). An effective method to reduce the cogging torque is obtained by adjusting the slot opening. In addition, the influences of different slot openings on back electromotive force (back-EMF), air gap flux density and flux linkage are investigated and experimentally validated using the prototype BLDCM.

Study on Reducing Cogging Torque of Interior PM Motor for Agricultural Electric Vehicle

  • Cho, Ju-Hee;Park, Yong-Un;Kim, Dae-Kyong
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.2 no.2
    • /
    • pp.134-140
    • /
    • 2013
  • This paper proposes a new design of rotor shape of Interior Permanent Magnet Synchronous Motor (IPMSM) used for agricultural electric vehicle (AEV). The distribution of the residual magnetic flux density at the air gap is modified by rotor surface shape and V-type magnet angle. As a result, cogging torque and physical characteristic have been improved, and back electromotive force (back-EMF) of the suggested model has been improved to be closest to sine wave form compared to initial model. The validity of the proposed rotor shape optimization is confirmed by the manufactured IPM rotor core and measured the performance of the cogging torque.

Operation of Brushless DC Motor without a Rotor Magnet Position Sensor (회전자극 위치센서 없는 Brushless DC전동기의 운전에 관한 연구)

  • 서석훈;엄우용
    • Journal of the Korean Institute of Telematics and Electronics T
    • /
    • v.36T no.3
    • /
    • pp.50-55
    • /
    • 1999
  • Brushless DC Motor(BLDCM) has high efficiency. But this type of motor needs a rotor sensor which complicates the motor configuration. Rotor position sensor degrades system reliability in the severe environmental condition. In this paper, we study a controller which permits the determination of the rotor position by the back EMF to eliminate the rotor position sensor Also, since the back EMF is zero at standstill, a starting technique which permits the starting of an asynchronous motor without a sensor is described. The controller is implemented using microcontroller for minimal external component.

  • PDF

A Study on the Parameter Identification of a Brushless DC Motor (브러시리스 직류전동기의 파라미터 동정에 관한 연구)

  • 임영철;조경영;정영국;김영민;장영학
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.7 no.2
    • /
    • pp.41-50
    • /
    • 1993
  • This paper describes an effort to develop a microcomputer-based parameter identification system for three phase and two phase brushless DC motor. Back EMF equation is derived from back EMF waveform of three phase and two phase brushless DC motor. In this paper, a new identification algorithm for the brushless DC motor parameters by Pasek's technique is developed. It is found that Pasek's equation is valid for the brushless DC motor, too. The results obtained clearly shows that it is possible to implement the identification system for the determination of the brushless DC motor parameters. To minimize errors due to the ripple component in the measured armature current, digital averaging firis employed. The whole identification process of signal generation, measuring, parameter determination is fully automated. The use of the propod method in the parameter identifition system shows that the averaged current curve is in excellent agreement with the estimated current curve. Therefore, this close agreement confirms the validity of this technique.

  • PDF

A novel Active Converter of 4-phase SRM for Torque Characteristic Improving (4상 SRM의 토크 특성개선을 위한 컨버터)

  • Wang, Huijun;Park, Tae-Hub;Kim, Tae-Hyoung;Lee, Dong-Hee;Ahn, Jin-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2008.06a
    • /
    • pp.265-267
    • /
    • 2008
  • As generally recognized, the driving performance of a SRM at higher speed will be degraded due to the effects of back electromagnetic force (EMF). This phenomenon can be improved via voltage boosting. So in this paper an improved converter of enhancing the performance for four-phase switched reluctance motor (SRM) is proposed. By using one additional capacitor and switches, an extra controllable boosted voltage can be produced during the rise and fall periods of a motor phase current. Then this active boosted voltage can reduce the effect of EMF on the current, particularly at high speeds. The attractive features of the proposed converter are as follows: obtaining boosted voltage to improve performance of SRM with same numbers of switch and diode as asymmetric converter, having higher control flexibility and capability of boosting voltage compared with passive boosting converters, possessing lower cost and simple control in comparison with existing active boosting converters. The performances of the proposed circuit are verified by the simulation and experiment results.

  • PDF