• Title/Summary/Keyword: b-y Ions

Search Result 590, Processing Time 0.026 seconds

Improving Process Capability by 2-Way Classification (2원배치법(元配置法)을 이용한 공정능력(工程能力)의 향상(向上))

  • Gu, Bon-Cheol;Song, Seo-Il
    • Journal of Korean Society for Quality Management
    • /
    • v.17 no.2
    • /
    • pp.64-69
    • /
    • 1989
  • This paper aims at analyzing the process capability and at determining an optimal condition by experimental designs using the 2-way classification with repitition in order to maintain lower Nacl content and to refine both of a very small quantity of fatty acid and various magnetic ions in the glycerin to use ion exchange resin treatment process. An optimal condition of each level combination in both of passing temperature of cation exchange resin($A_1$, $A_2$, $A_3$) and of anion exchange resin($B_1$, $B_2$, $B_3$) is $A_3B_3$. The process capability index is improved from 0.63 to 1.40 and is interpreted as a desirable state. This analysis of process capability by experimental designs will contribute to improving productivity and quality of products.

  • PDF

Growth of superconducting $MgB_2$ fibers for wire applications

  • Kim J. H.;Yoon H. R.;Jo W.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.7 no.4
    • /
    • pp.1-3
    • /
    • 2005
  • Superconducting $MgB_2$ fibers are in-situ grown by a diffusion method. The fibers are prepared by exposing B filaments to Mg vapor inside a folded Ta foil over a wide range of temperature and growth time. The materials are sealed inside a quartz tube by gas welding. The as - grown fibers are characterized by scanning electron microscopy and energy dispersive x - ray analysis. The fibers have a diameter of about $110{\mu}m$. Surface morphology of the fibers looks dependent on growth temperature and mixing ratio of Mg and B. Radial distribution of Mg ions into B is observed and analyzed over the cross - sectional area. Transport properties of the $MgB_2$ fibers are examined by a physical property measurement system. The $MgB_2$ fibers grown at $900^{\circ}C$ for 2 hours show a superconducting transition at 39.8K with ${\Delta}T_c<$ 2.0 K. Resistance at room temperature $MgB_2$ is 3.745 $\Omega$ and residual resistivity ratio (RRR) is estimated as 4.723.

Functional Characterization of the ${\alpha}$- and ${\beta}$-Subunits of a Group II Chaperonin from Aeropyrum pernix K1

  • Lee, Jin-Woo;Kim, Se Won;Kim, Jeong-Hwan;Jeon, Sung-Jong;Kwon, Hyun-Ju;Kim, Byung-Woo;Nam, Soo-Wan
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.6
    • /
    • pp.818-825
    • /
    • 2013
  • We isolated and functionally characterized the ${\alpha}$- and ${\beta}$-subunits (ApCpnA and ApCpnB) of a chaperonin from Aeropyrum pernix K1. The constructed vectors pET3d-ApCpnA and pET21a-ApCpnB were transformed into E. coli Rosetta (DE3), BL21 (DE3), or CodonPlus (DE3) cells. The expression of ApCpnA (60.7 kDa) and ApCpnB (61.2 kDa) was confirmed by SDS-PAGE analysis. Recombinant ApCpnA and ApCpnB were purified by heat-shock treatment and anion-exchange chromatography. ApCpnA and ApCpnB were able to hydrolyze not only ATP, but also CTP, GTP, and UTP, albeit with different efficacies. Purified ApCpnA and ApCpnB showed the highest ATPase, CTPase, UTPase, and GTPase activities at $80^{\circ}C$. Furthermore, the addition of ApCpnA and ApCpnB effectively protected citrate synthase (CS) and alcohol dehydrogenase (ADH) from thermal aggregation and inactivation at $43^{\circ}C$ and $50^{\circ}C$, respectively. In particular, the addition of ATP or CTP to ApCpnA and ApCpnB resulted in the most effective prevention of thermal aggregation and inactivation of CS and ADH. The ATPase activity of the two chaperonin subunits was dependent on the salt concentration. Among the ions we examined, potassium ions were the most effective at enhancing the ATP hydrolysis activity of ApCpnA and ApCpnB.

Swelling Indexes and Relevant Removal of Cd and Pb of the Na-bentonite activated with Na2CO3 and NaHCO3 (Na2CO3와 NaHCO3로 활성화한 Na-벤토나이트의 팽창특성과 Cd와 Pb의 상대적 등온흡착곡선)

  • Chung, Doug-Young;Yang, Jae E.;Oh, Taek-G.;Lee, Kyo-S.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.40 no.1
    • /
    • pp.64-70
    • /
    • 2007
  • In this experiment we transformed the Ca-bentonite into Na-bentonite with two inorganic Na-chemicals under different temperatures. These two Na-chemicals were selected among five different Na-chemicals which carries Na as cation. The swelling capacity of the Na chemical-treated bentonite was increased with increasing Na concentration, while the maximum concentration of Na solution decreased with increasing temperature. $Na_2CO_3$ was most effective in exchanging Ca ions and resulting in the highest swelling index among the Na-chemicals. The swelling index was significantly increased with increasing temperature to $100^{\circ}C$. But the equilibration time reversely affected the swelling index due to a rapid increase in evaporation of water. Within same amount of Na treatment SI slightly decreased not only with increasing contacting time but also with increasing temperature. The adsorption for the transformed Na-bentonite was increased with increasing equilibrium concentrations of Pb and Cd ions for all the activated Na-B and indigenous Ca-B and Na-B while the adsorbability of $Pb^{2+}$ onto each Na-B sample is more than that of $Cd^{2+}$. And the maximum adsorption capacity sequence of Na-B samples for Pb and Cd has been found to be 5 % $Na_2CO_3.$ - 5 % $NaHCO_3$ > 3 % $NaHCO_3$ > 3 % $Na_2CO_3$ > 1 % $NaHCO_3$ > 1 % $Na_2CO_3$ > indigenous Na-B > indigenous Ca-B, showing that there are contradictory results about the relationship of cation adsorption to CEC.

Interaction Between Transparent Dielectric of Bi2O3-B2O3-BaO-ZnO Glass and Ag Electrode (Bi2O3-B2O3-BaO-ZnO계 투명유전체와 Ag 전극의 반응)

  • An, Yong-Tae;Choi, Byung-Hyun;Kim, Hyung-Sun
    • Korean Journal of Materials Research
    • /
    • v.18 no.12
    • /
    • pp.678-682
    • /
    • 2008
  • This study investigates $Bi_2O_3$-$B_2O_3$-BaO-ZnO glass with variations of the $Co_3O_4$ content (0.25, 0.5, 1, and 2 wt%) and the interaction between transparent dielectric and Ag electrodes heat-treated at $500-560^{\circ}C$ for 30 min. The glass transition temperature, softening temperature and thermal expansion coefficient were $432^{\circ}C$, $460^{\circ}C$ and $81.4{\times}10^{-7}/^{\circ}C$, respectively. The transmittance of 0.25 wt% $Co_3O_4$ to which dielectric was added was highest and was decreased due to coloration with the addition of more than 0.25 wt%. However, without $Co_3O_4$, the transmittance of the transparent layer was decreased due to the formation of $Ba_5Bi_3$; however, the occurrence of the crystal phase decreased as a result of the addition of $Co_3O_4$. The amount of $Co^{2+}$ ions increased as the $Co_3O_4$ increased. With a maximum of $Co^{3+}$ ions, the highest transmittance was observed.

Structure and $Ca^{2+}$-ion effects on the function of $\alpha$-cyclodextrin Glucanotransferase from B. macerans : An X-ray study (Bacillus macerans에서 정제한 $\alpha$-cyclooextrin glucanotransferase의 구조와 칼슘이온이 기능에 미치는 영향 : X-ray 연구)

  • 최희욱;홍순강
    • KSBB Journal
    • /
    • v.19 no.2
    • /
    • pp.159-163
    • /
    • 2004
  • The X-ray structure of the cydodextrin-glucanotransferase of Bacillus macerans was solved by molecular replacement at 2.0 ${\AA}$ resolution. The refined structure has a crystallographic R-factor of 16.6%, (R$\sub$free/ = 20.5%). A new metal binding site occupied by two Ca$\^$2+/-ions was found at an accession channel of the active site. There is a large accumulation of negative charges that bind these Ca$\^$2+/-ions, thereby connecting segment ${\beta}$13-${\alpha}$G (residue 254-276) to the main body of domain A (at ${\alpha}$H, residue 283-297). The segment 313-${\alpha}$G contains the catalytic residue Glu258 between subsite 1 and -1 and Tyr260 (subsite 2) which is located at the entrance of the active site. The Ca$\^$2+/-site 3a,b may have a major role for the activity and specificity of this CGTase, although it is not even conserved for the a-subclass of CGTases.

Surface Oxidation of High Strength Automotive Steels during Continuous Annealing, and the Influence of Trace Elements of P,B, and Sb

  • Sohn, Il-Ryoung;Park, Joong-Chul;Kim, Jong-Sang
    • Corrosion Science and Technology
    • /
    • v.9 no.6
    • /
    • pp.259-264
    • /
    • 2010
  • In continuous hot dip galvanizing process, oxide formation on steel surface has an influence on Zn wetting. High strength automotive steel contains high amount of Si and Mn, where Si-Mn composite oxides such as $Mn_2SiO_4$ or $MnSiO_3$ covers the surface after annealing. Zn wetting depends on how the aluminothermia reaction can reduce the Mn-Si composite oxides and then form inhibition layer such as $Fe_2Al_5$ on the steel surface. The outward diffusion of metallic ions such as $Mn^{2+}$, $Si^{2+}$ in the steel matrix is very important factor for the formation of the surface oxides on the steel surface. The surface state and grain boundaries provide an important role for the diffusion and the surface oxide reactions. Some elements such as P, Sb, and B have a strong affinity for the interface precipitation, and it influence the diffusivity of metallic ions on grain boundaries. B oxide forms very rapildly on the steel surface during the annealing, and this promote complex oxides with $SiO_2$ or MnO. P has inter-reacted with other elements on the grain boundaries and influence the diffusion through on them. Small addition of Sb could suppress the decarburization from steel surface and retards the formation of internal and external selective oxides on the steel surface. Interface control by the trace elements such as Sb could be available to improve the Zn wettability during the hot dip galvanizing.

Plasma source ion implantations for shallow $p^+$/n junction

  • Jeonghee Cho;Seuunghee Han;Lee, Yeonhee;Kim, Lk-Kyung;Kim, Gon-Ho;Kim, Young-Woo;Hyuneui Lim;Moojin Suh
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.180-180
    • /
    • 2000
  • Plasma source ion implantation is a new doping technique for the formation of shallow junction with the merits of high dose rate, low-cost and minimal wafer charging damage. In plasma source ion implantation process, the wafer is placed directly in the plasma of the appropriate dopant ions. Negative pulse bias is applied to the wafer, causing the dopant ions to be accelerated toward the wafer and implanted below the surface. In this work, inductively couples plasma was generated by anodized Al antenna that was located inside the vacuum chamber. The outside wall of Al chamber was surrounded by Nd-Fe-B permanent magnets to confine the plasma and to enhance the uniformity. Before implantation, the wafer was pre-sputtered using DC bias of 300B in Ar plasma in order to eliminate the native oxide. After cleaning, B2H6 (5%)/H2 plasma and negative pulse bias of -1kV to 5 kV were used to form shallow p+/n junction at the boron dose of 1$\times$1015 to 5$\times$1016 #/cm2. The as-implanted samples were annealed at 90$0^{\circ}C$, 95$0^{\circ}C$ and 100$0^{\circ}C$during various annealing time with rapid thermal process. After annealing, the sheet resistance and the junction depth were measured with four point probe and secondary ion mass spectroscopy, respectively. The doping uniformity was also investigated. In addition, the electrical characteristics were measured for Schottky diode with a current-voltage meter.

  • PDF

Tallium(I) Ion-Selective Electrodes Based on Crown Ethers (크라온에테르를 이용한 탈륨(I) 이온 선택성 전극)

  • Sung Min Kim;Sung Uk Jung;Jineun Kim;Jae Sang Kim
    • Journal of the Korean Chemical Society
    • /
    • v.37 no.8
    • /
    • pp.773-778
    • /
    • 1993
  • Poly(vinyl chloride)(PVC) membrane electrodes based on the lipophilic neutral carrier, dibenzo-18-crown-6(DB18C6) and benzo-15-crown-5 (B15C5) as the active sensors for Tl$^+$ ion have been prepared and tested in different content of the potassium tetrakis(4-chlorophenyl)borate (KTClPB) as lipophilic salt. Dioctyl adipate (DOA), 2-nitrophenyl phenyl ether (NPPE) and o-nitrophenyl actyl ether (NPOE) were used as plasticizing solvent mediators. Electrodes exhibited good linear responses of 40∼55 mV decade$^{-1}$ for Tl$^+$ ion within the concentration ranges 10$^{-1}$∼10$^{-5}$M TlNO$_3$. Selectivity coefficients of interfering ions (alkali metal, alkaline earth metal and some transition metal ions) for Tl$^+$-ISE were determined by separate solution method and were sufficiently small for most of them. These crown ether type ion-selective electrodes are suitable for use with aqueous solution at pH > 3.

  • PDF

Expression and Characterization of β-1,4-Galactosyltransferase from Neisseria meningitidis and Neisseria gonorrhoeae

  • Park, Jae-Eun;Lee, Ki-Young;Do, Su-Il;Lee, Sang-Soo
    • BMB Reports
    • /
    • v.35 no.3
    • /
    • pp.330-336
    • /
    • 2002
  • The lgtB genes that encode $\beta$-1,4-galactosyltransferases from Neisseria meningitidis ATCC 13102 and gonorrhoeae ATCC 31151 were isolated by a polymerase chain reaction using the pfu DNA polymerase. They were expressed under the control of lac and T7 promoters in Escherichia coli M15 and BL21 (DE3). Although the genes were efficiently expressed in E. coli M15 at $37^{\circ}C$ (33 kDa), most of the $\beta$-1,4-galactosyltransferases that were produced were insoluble and proteolysed into enzymatically inactive polypeptides that lacked C-terminal residues (29.5 kDa and 28 kDa) during the purification steps. When the temperature of the cell growth was lowered to $25^{\circ}C$, however, the solubility of the $\beta$-1,4-galactosyltransferases increased substantially. A stable N-terminal his-tagged recombinant enzyme preparation could be achieved with E. coli BL21 (DE3) that expressed lgtB. Therefore, the cloned $\beta$-1,4-galactosyltransferases were expressed under the control of the T7 promoter in E. coli BL21 (DE3), mostly to the soluble form at $25^{\circ}C$. The proteins were easily purified to homogeneity by column chromatography using Ni-NTA resin, and were found to be active. The galactosyltransferases exhibited pH optimum at 6.5-7.0, and had an essential requirement for the $Mn^{+2}$ ions for its action. The $Mg^{+2}$ and $Ca{+2}$ ions showed about half of the galactosyltransferase activities with the $Mn^{+2}$ ion. In the presence of the $Fe^{+2}$ ion, partial activation was observed with the $\beta$-1,4-galactosyltransferase from N. meningitidis(64% of the enzyme activity with the $Mn^{+2}$$Ni^{+2}$, $Zn^{+2}$, and $Cu^{+2}$ ions could not activate the $\beta$-1,4-galactosyltransferase activity. The inhibited enzyme activity with the $Ni^{+2}$ ion was partially recovered with the $Mn^{+2}$$Fe^{+2}$, $Zn^{+2}$, and $Cu^{+2}$ ions, the $Mn^{+2}$$\beta$-1,4-galactosyltransferase activity was 1.5-fold stimulated with the non-ionic detergent Triton X-100 (0.1-5%).