Browse > Article
http://dx.doi.org/10.4014/jmb.1212.12041

Functional Characterization of the ${\alpha}$- and ${\beta}$-Subunits of a Group II Chaperonin from Aeropyrum pernix K1  

Lee, Jin-Woo (Department of Biomaterial Control (BK21 Program), Dong-Eui University Graduate School)
Kim, Se Won (Department of Biomaterial Control (BK21 Program), Dong-Eui University Graduate School)
Kim, Jeong-Hwan (Department of Biomaterial Control (BK21 Program), Dong-Eui University Graduate School)
Jeon, Sung-Jong (Department of Biomaterial Control (BK21 Program), Dong-Eui University Graduate School)
Kwon, Hyun-Ju (Department of Biomaterial Control (BK21 Program), Dong-Eui University Graduate School)
Kim, Byung-Woo (Department of Biomaterial Control (BK21 Program), Dong-Eui University Graduate School)
Nam, Soo-Wan (Department of Biomaterial Control (BK21 Program), Dong-Eui University Graduate School)
Publication Information
Journal of Microbiology and Biotechnology / v.23, no.6, 2013 , pp. 818-825 More about this Journal
Abstract
We isolated and functionally characterized the ${\alpha}$- and ${\beta}$-subunits (ApCpnA and ApCpnB) of a chaperonin from Aeropyrum pernix K1. The constructed vectors pET3d-ApCpnA and pET21a-ApCpnB were transformed into E. coli Rosetta (DE3), BL21 (DE3), or CodonPlus (DE3) cells. The expression of ApCpnA (60.7 kDa) and ApCpnB (61.2 kDa) was confirmed by SDS-PAGE analysis. Recombinant ApCpnA and ApCpnB were purified by heat-shock treatment and anion-exchange chromatography. ApCpnA and ApCpnB were able to hydrolyze not only ATP, but also CTP, GTP, and UTP, albeit with different efficacies. Purified ApCpnA and ApCpnB showed the highest ATPase, CTPase, UTPase, and GTPase activities at $80^{\circ}C$. Furthermore, the addition of ApCpnA and ApCpnB effectively protected citrate synthase (CS) and alcohol dehydrogenase (ADH) from thermal aggregation and inactivation at $43^{\circ}C$ and $50^{\circ}C$, respectively. In particular, the addition of ATP or CTP to ApCpnA and ApCpnB resulted in the most effective prevention of thermal aggregation and inactivation of CS and ADH. The ATPase activity of the two chaperonin subunits was dependent on the salt concentration. Among the ions we examined, potassium ions were the most effective at enhancing the ATP hydrolysis activity of ApCpnA and ApCpnB.
Keywords
Aeropyrum pernix; ATP hydrolysis activity; chaperonin; thermal aggregation; thermal inactivation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Minuth, T., G. Frey, P. Lindner, R. Rachel, K. O. Stetter, and R. Jaenicke. 1998. Recombinant homo- and heterooligomers of an ultrastable chaperonin from the archaeon Pyrodictium occultum show chaperone activity in vitro. Eur. J. Biochem. 258: 837-845.   DOI   ScienceOn
2 Minuth, T., M. Henn, K. Rutkat, S. Andra, G. Frey, R. Rachel, et al. 1999. The recombinant thermosome from the hyperthermophilic archaeon Methanopyrus kandleri: In vitro analysis of its chaperone activity. Biol. Chem. 380: 55-62.
3 Okochi, M., H. Matsuzaki, T. Nomura, N. Ishii, and M. Yohda. 2005. Molecular characterization of the group II chaperonin from the hyperthermophilic archaeum Pyrococcus horikoshii OT3. Extremophiles 9: 127-134.   DOI   ScienceOn
4 Shomura, Y., T. Yoshida, R. Iizuka, T. Maruyama, M. Yohda, and K. Miki. 2004. Crystal structures of the group II chaperonin from Thermococcus strain KS-1: Steric hindrance by the substituted amino acid, and inter-subunit rearrangement between two crystal forms. J. Mol. Biol. 335: 1265-1278.   DOI   ScienceOn
5 Son, H. J., E. J. Shin, S. W. Nam, D. E. Kim, and S. J. Jeon. 2007. Properties of the $\alpha$ subunit of a chaperonin from the hyperthermophilic crenarchaeon Aeropyrum pernix K1. FEMS Microbiol. Lett. 266: 103-109.   DOI   ScienceOn
6 Trent, J. D., E. Nimmesgern, J. S. Wall, F. U. Hartl, and A. L. Horwich. 1991. A molecular chaperone from a thermophilic archaebacterium is related to the eukaryotic protein t-complex polypeptide-1. Nature 354: 490-493.   DOI   ScienceOn
7 Waldmann, T., E. Nimmesgern, M. Nitsch, J. Peters, G. Pfeifer, S. Muller, et al. 1995. The thermosome of Thermoplasma acidophilum and its relationship to the eukaryotic chaperonin TRiC. Eur. J. Biochem. 227: 848-856.   DOI   ScienceOn
8 Zhi, W., P. Srere, and C. T. Evans. 1991. Conformational stability of pig citrate synthase and some active site mutants. Biochemistry 30: 9281-9286.   DOI   ScienceOn
9 Wiech, H., J. Buchner, R. Zimmermann, and U. Jakob. 1992. Hsp90 chaperones protein folding in vitro. Nature 358: 169-170.   DOI   ScienceOn
10 Yan, Z., S. Fujiwara, K. Kohda, M. Takagi, and T. Imanaka. 1997. In vitro stabilization and in vivo solubilization of foreign proteins by the beta subunit of a chaperonin from the hyperthermophilic archaeon Pyrococcus sp. strain KOD1. Appl. Environ. Microbiol. 63: 785-789.
11 Yoshida, T., M. Yohda, T. Iida, T. Maruyama, H. Taguchi, K. Yazaki, et al. 1997. Structural and functional characterization of homo-oligomeric complexes of alpha and beta chaperonin subunits from the hyperthermophilic archaeum Thermococcus strain KS-1. J. Mol. Biol. 273: 635-645.   DOI   ScienceOn
12 Zhi, W., S. J. Landry, L. M. Gierasch, and P. A. Srere. 1992. Renaturation of citrate synthase: Influence of denaturant and folding assistants. Protein Sci. 1: 522-529.
13 Bukau, B. and A. L. Horwich. 1998. The Hsp70 and Hsp60 chaperone machines. Cell 92: 351-366.   DOI   ScienceOn
14 Furutani, M., T. Iida, T. Yoshida, and T. Maruyama. 1998. Group II chaperonin in a thermophilic methanogen Methanococcus thermolithotrophicus. Chaperone activity and filament-forming ability. J. Biol. Chem. 273: 28399-28407.   DOI   ScienceOn
15 Braig, K., Z. Otwinowski, R. Hegde, D. C. Boisvert, A. Joachimiak, A. L. Horwich, and P. B. Sigler. 1994. The crystal structure of the bacterial chaperonin GroEL at 2.8 A. Nature 371: 578-586.   DOI   ScienceOn
16 Buchner, J., M. Schmidt, M. Fuchs, R. Jaenicke, R. Ru-dolph, F. X. Schmid, and T. Kiefhaber. 1991. GroE facilitates refolding of citrate synthase by suppressing aggregation. Biochemistry 30: 1586-1591.   DOI   ScienceOn
17 Chang, Z., T. P. Primm, J. Jakana, I. H. Lee, I. Sery-sheva, W. Chiu, et al. 1996. Mycobacterium tuberculosis 16-kDa antigen (Hsp 16.3) functions as an oligomeric structure in vitro to suppress thermal aggregation. J. Biol. Chem. 271: 7218-7223.   DOI
18 Chen, H. Y., Z. M. Chu, Y. H. Ma, Y. Zhang, and S. L. Yang. 2007. Expression and characterization of the chaperonin molecular machine from the hyperthermophilic archaeon Pyrococcus furiosus. J. Basic Microbiol. 47: 132-137.   DOI   ScienceOn
19 Ellis, R. J. 1996. The Chaperonins. Academic Press, San Diego, USA.
20 Guaqliardi, A., L. Cerchia, S. Bartolucci, and M. Rossi. 1994. The chaperonin from the archaeon Sulfolobus solfataricus promotes correct refolding and prevents thermal denaturation in vitro. Protein Sci. 3: 1436-1443.   DOI   ScienceOn
21 Gutsche, I., L. O. Essen, and W. Baumeister. 1999. Group II chaperonins: New TRic(k)s and turns of a protein folding machine. J. Mol. Biol. 293: 295-312.   DOI   ScienceOn
22 Gutsche, I., O. Mihalache, and W. Baumeister. 2000. ATPase cycle of an archaeal chaperonin. J. Mol. Biol. 300: 187-196.   DOI   ScienceOn
23 Hartl, F. U. and M. Hayer-Hartl. 2002. Molecular chaperones in the cytosol: From nascent chain to folded protein. Science 295: 1852-1858.   DOI   ScienceOn
24 Kawarabayasi, Y., Y. Hino, H. Horikawa, S. Yamazaki, Y. Haikawa, K. Jin-no, et al. 1999. Complete genome sequence of an aerobic hyper-thermophilic crenarchaeon, Aeropyrum pernix K1. DNA Res. 6: 83-101, 145-152.   DOI   ScienceOn
25 Hirai, H., K. Noi, K. Hongo, T. Mizobata, and Y. Kawata. 2008. Functional characterization of the recombinant group II chaperonin alpha from Thermoplasma acidophilum. J. Biochem. 143: 505-515.
26 Kim, S., K. R. Willison, and A. L. Horwich. 1994. Cystosolic chaperonin subunits have a conserved ATPase domain but diverged polypeptide-binding domains. Trends Biochem. Sci. 19: 543-548.   DOI   ScienceOn
27 Isumi, M., S. Fuiwara, M. Takagi, S. Kanaya, and T. Imanaka. 1999. Isolation and characterization of a second subunit of molecular chaperonin from Pyrococcus kodakaraensis KOD1: Analysis of an ATPase-deficient mutant enzyme. Appl. Environ. Microbiol. 65: 1801-1805.
28 Kim, H. and I. H. Kim. 2005. Refolding of fusion ferritin by gel filtration chromatography (GFC). Biotechnol. Bioprocess Eng. 10: 500-504.   DOI   ScienceOn
29 Kohda, J., H. Kawanishi, K. Suehara, Y. Nakano, and T. Yano. 2006. Stabilization of free and immobilized enzymes using hyperthermophilic chaperonin. J. Biosci. Bioeng. 101: 131-136.   DOI   ScienceOn
30 Kubota, H., G. Hynes, and K. Willison. 1995. The chaperonin containing t-complex polypeptide 1 (TCP-1). Multisubunit machinery assisting in protein folding and assembly in the eukaryotic cytosol. Eur. J. Biochem. 230: 3-16.   DOI   ScienceOn
31 Marco, S., D. Urena, J. L. Carrascosa, T. Waldmann, J. Peters, R. Hegerl, et al. 1994. The molecular chaperone TF55. Assessment of symmetry. FEBS Lett. 341: 152-155.   DOI   ScienceOn
32 Mayhew, M., A. C. da Silva, J. Martin, H. Erdjument-Bromage, P. Tempst, and F. U. Hartl. 1996. Protein folding in the central cavity of the GroEL-GroES chaperonin complex. Nature 379: 420-426.   DOI   ScienceOn
33 Ranson, N. A., H. E. White, and H. R. Saibil. 1998. Chaperonins. Biochem. J. 333: 233-242.   DOI