References
- Braig, K., Z. Otwinowski, R. Hegde, D. C. Boisvert, A. Joachimiak, A. L. Horwich, and P. B. Sigler. 1994. The crystal structure of the bacterial chaperonin GroEL at 2.8 A. Nature 371: 578-586. https://doi.org/10.1038/371578a0
- Buchner, J., M. Schmidt, M. Fuchs, R. Jaenicke, R. Ru-dolph, F. X. Schmid, and T. Kiefhaber. 1991. GroE facilitates refolding of citrate synthase by suppressing aggregation. Biochemistry 30: 1586-1591. https://doi.org/10.1021/bi00220a020
- Bukau, B. and A. L. Horwich. 1998. The Hsp70 and Hsp60 chaperone machines. Cell 92: 351-366. https://doi.org/10.1016/S0092-8674(00)80928-9
- Chang, Z., T. P. Primm, J. Jakana, I. H. Lee, I. Sery-sheva, W. Chiu, et al. 1996. Mycobacterium tuberculosis 16-kDa antigen (Hsp 16.3) functions as an oligomeric structure in vitro to suppress thermal aggregation. J. Biol. Chem. 271: 7218-7223. https://doi.org/10.1074/jbc.271.12.7218
- Chen, H. Y., Z. M. Chu, Y. H. Ma, Y. Zhang, and S. L. Yang. 2007. Expression and characterization of the chaperonin molecular machine from the hyperthermophilic archaeon Pyrococcus furiosus. J. Basic Microbiol. 47: 132-137. https://doi.org/10.1002/jobm.200610215
- Ellis, R. J. 1996. The Chaperonins. Academic Press, San Diego, USA.
- Furutani, M., T. Iida, T. Yoshida, and T. Maruyama. 1998. Group II chaperonin in a thermophilic methanogen Methanococcus thermolithotrophicus. Chaperone activity and filament-forming ability. J. Biol. Chem. 273: 28399-28407. https://doi.org/10.1074/jbc.273.43.28399
- Guaqliardi, A., L. Cerchia, S. Bartolucci, and M. Rossi. 1994. The chaperonin from the archaeon Sulfolobus solfataricus promotes correct refolding and prevents thermal denaturation in vitro. Protein Sci. 3: 1436-1443. https://doi.org/10.1002/pro.5560030910
- Gutsche, I., L. O. Essen, and W. Baumeister. 1999. Group II chaperonins: New TRic(k)s and turns of a protein folding machine. J. Mol. Biol. 293: 295-312. https://doi.org/10.1006/jmbi.1999.3008
- Gutsche, I., O. Mihalache, and W. Baumeister. 2000. ATPase cycle of an archaeal chaperonin. J. Mol. Biol. 300: 187-196. https://doi.org/10.1006/jmbi.2000.3833
- Hartl, F. U. and M. Hayer-Hartl. 2002. Molecular chaperones in the cytosol: From nascent chain to folded protein. Science 295: 1852-1858. https://doi.org/10.1126/science.1068408
- Hirai, H., K. Noi, K. Hongo, T. Mizobata, and Y. Kawata. 2008. Functional characterization of the recombinant group II chaperonin alpha from Thermoplasma acidophilum. J. Biochem. 143: 505-515.
- Isumi, M., S. Fuiwara, M. Takagi, S. Kanaya, and T. Imanaka. 1999. Isolation and characterization of a second subunit of molecular chaperonin from Pyrococcus kodakaraensis KOD1: Analysis of an ATPase-deficient mutant enzyme. Appl. Environ. Microbiol. 65: 1801-1805.
- Kawarabayasi, Y., Y. Hino, H. Horikawa, S. Yamazaki, Y. Haikawa, K. Jin-no, et al. 1999. Complete genome sequence of an aerobic hyper-thermophilic crenarchaeon, Aeropyrum pernix K1. DNA Res. 6: 83-101, 145-152. https://doi.org/10.1093/dnares/6.2.83
- Kim, H. and I. H. Kim. 2005. Refolding of fusion ferritin by gel filtration chromatography (GFC). Biotechnol. Bioprocess Eng. 10: 500-504. https://doi.org/10.1007/BF02932284
- Kim, S., K. R. Willison, and A. L. Horwich. 1994. Cystosolic chaperonin subunits have a conserved ATPase domain but diverged polypeptide-binding domains. Trends Biochem. Sci. 19: 543-548. https://doi.org/10.1016/0968-0004(94)90058-2
- Kohda, J., H. Kawanishi, K. Suehara, Y. Nakano, and T. Yano. 2006. Stabilization of free and immobilized enzymes using hyperthermophilic chaperonin. J. Biosci. Bioeng. 101: 131-136. https://doi.org/10.1263/jbb.101.131
- Kubota, H., G. Hynes, and K. Willison. 1995. The chaperonin containing t-complex polypeptide 1 (TCP-1). Multisubunit machinery assisting in protein folding and assembly in the eukaryotic cytosol. Eur. J. Biochem. 230: 3-16. https://doi.org/10.1111/j.1432-1033.1995.tb20527.x
- Marco, S., D. Urena, J. L. Carrascosa, T. Waldmann, J. Peters, R. Hegerl, et al. 1994. The molecular chaperone TF55. Assessment of symmetry. FEBS Lett. 341: 152-155. https://doi.org/10.1016/0014-5793(94)80447-8
- Mayhew, M., A. C. da Silva, J. Martin, H. Erdjument-Bromage, P. Tempst, and F. U. Hartl. 1996. Protein folding in the central cavity of the GroEL-GroES chaperonin complex. Nature 379: 420-426. https://doi.org/10.1038/379420a0
- Minuth, T., G. Frey, P. Lindner, R. Rachel, K. O. Stetter, and R. Jaenicke. 1998. Recombinant homo- and heterooligomers of an ultrastable chaperonin from the archaeon Pyrodictium occultum show chaperone activity in vitro. Eur. J. Biochem. 258: 837-845. https://doi.org/10.1046/j.1432-1327.1998.2580837.x
- Minuth, T., M. Henn, K. Rutkat, S. Andra, G. Frey, R. Rachel, et al. 1999. The recombinant thermosome from the hyperthermophilic archaeon Methanopyrus kandleri: In vitro analysis of its chaperone activity. Biol. Chem. 380: 55-62.
- Okochi, M., H. Matsuzaki, T. Nomura, N. Ishii, and M. Yohda. 2005. Molecular characterization of the group II chaperonin from the hyperthermophilic archaeum Pyrococcus horikoshii OT3. Extremophiles 9: 127-134. https://doi.org/10.1007/s00792-004-0427-y
- Ranson, N. A., H. E. White, and H. R. Saibil. 1998. Chaperonins. Biochem. J. 333: 233-242. https://doi.org/10.1042/bj3330233
- Shomura, Y., T. Yoshida, R. Iizuka, T. Maruyama, M. Yohda, and K. Miki. 2004. Crystal structures of the group II chaperonin from Thermococcus strain KS-1: Steric hindrance by the substituted amino acid, and inter-subunit rearrangement between two crystal forms. J. Mol. Biol. 335: 1265-1278. https://doi.org/10.1016/j.jmb.2003.11.028
-
Son, H. J., E. J. Shin, S. W. Nam, D. E. Kim, and S. J. Jeon. 2007. Properties of the
$\alpha$ subunit of a chaperonin from the hyperthermophilic crenarchaeon Aeropyrum pernix K1. FEMS Microbiol. Lett. 266: 103-109. https://doi.org/10.1111/j.1574-6968.2006.00513.x - Trent, J. D., E. Nimmesgern, J. S. Wall, F. U. Hartl, and A. L. Horwich. 1991. A molecular chaperone from a thermophilic archaebacterium is related to the eukaryotic protein t-complex polypeptide-1. Nature 354: 490-493. https://doi.org/10.1038/354490a0
- Waldmann, T., E. Nimmesgern, M. Nitsch, J. Peters, G. Pfeifer, S. Muller, et al. 1995. The thermosome of Thermoplasma acidophilum and its relationship to the eukaryotic chaperonin TRiC. Eur. J. Biochem. 227: 848-856. https://doi.org/10.1111/j.1432-1033.1995.tb20210.x
- Wiech, H., J. Buchner, R. Zimmermann, and U. Jakob. 1992. Hsp90 chaperones protein folding in vitro. Nature 358: 169-170. https://doi.org/10.1038/358169a0
- Yan, Z., S. Fujiwara, K. Kohda, M. Takagi, and T. Imanaka. 1997. In vitro stabilization and in vivo solubilization of foreign proteins by the beta subunit of a chaperonin from the hyperthermophilic archaeon Pyrococcus sp. strain KOD1. Appl. Environ. Microbiol. 63: 785-789.
- Yoshida, T., M. Yohda, T. Iida, T. Maruyama, H. Taguchi, K. Yazaki, et al. 1997. Structural and functional characterization of homo-oligomeric complexes of alpha and beta chaperonin subunits from the hyperthermophilic archaeum Thermococcus strain KS-1. J. Mol. Biol. 273: 635-645. https://doi.org/10.1006/jmbi.1997.1337
- Zhi, W., P. Srere, and C. T. Evans. 1991. Conformational stability of pig citrate synthase and some active site mutants. Biochemistry 30: 9281-9286. https://doi.org/10.1021/bi00102a021
- Zhi, W., S. J. Landry, L. M. Gierasch, and P. A. Srere. 1992. Renaturation of citrate synthase: Influence of denaturant and folding assistants. Protein Sci. 1: 522-529.
Cited by
- Coexpression of Alginate Lyase with Hyperthermophilic Archaea Chaperonin in E. coli vol.25, pp.2, 2015, https://doi.org/10.5352/jls.2015.25.2.130