• Title/Summary/Keyword: azimuth angle

Search Result 300, Processing Time 0.027 seconds

The Radiation Compensation Method for Two Dimensional Direction Finding of GPS Signal and Experiment Method (광대역 GPS신호의 2차원 방향탐지를 위한 방사보정 기법 및 시험 방안)

  • Ju, Hyung-Jun;Park, Seul-Gi;Kim, Dong-Whan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.1
    • /
    • pp.155-162
    • /
    • 2020
  • In this paper, we present a radiation compensation method and experiment method for two-dimensional direction finding by elevation and azimuth angles of broadband GPS signal, and then produce experimental results. Previous studies have performed direction finding by only using the azimuth angle of the detected signal. So, the compensation table utilizes compensation data by azimuth angles only. However, the presented method in this study has compensation data by azimuth and elevation angles for two-dimensional direction finding. Because of direction finding systems and applications are diversified, recently. So, we present a two-dimensional radiation compensation method. For evaluation of the presented compensation method, we calculate the ideal phase differences on the antenna for two-dimensional direction finding and simulate phase differences using a FEKO EM simulator. Subsequently, we analyze experimental data by radiation compensation experiments using the presented compensation method in an anechoic chamber.

A Study on the Distance and Object Recognition Applying the Airborne Ultrasonic Sensor (공중 초음파 센서를 응용한 거리 형상인식에 관한 연구)

  • Han, E.K.;Park, I.G.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.10 no.1
    • /
    • pp.10-17
    • /
    • 1990
  • Recently, object recognition ultrasonic sensor is being used with automatization of industrial machine. Points which characterize the object can be deleted by measuring the propagation time of ultrasonic impulse and azimuth which gives its maximum amplitude, and from these points shape, position and orientation of the object are deduced. A new measuring method is adopted, where the distance to the object is calculated by sound reflection time which is measured from O-cross point of sound wave, and azimuth is measured by angle indicating maximum amplitude. The measuring accuracy of 1.0mm for distance and $0.5-2^{\circ}$ for azimuth have been accomplished. By rotational scanning of sensor the characteristic point of an object can be known and it gives the information of its shape, position and orientation. Experimental results showed that the object of some complicated shape can be recognized, which suggest its applicability to robot.

  • PDF

Transfer alignment for strapdown inertial navigation system by angle matching method (스트랩다운 관성항법장치의 각을 이용한 초기전달 정렬기법)

  • 송기원;전창배;김현백
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.29-33
    • /
    • 1993
  • This paper suggests Kalman filter formulation using by precision GINS output angle for SDINS initial transfer alignment of missile. The Kalman filter model was derived from quaternion parameters and the transfer alignment system by angle matching method satisfies azimuth observability in horizontal angular motion. The estimated error of SDINS attitude settles to less 3mrad(1.sigma.) in 200 seconds at proper sea state.

  • PDF

On the stable adaptive controller for the turret gun system using direct adaptive control method (직접적응제어 방식을 사용한 포탑포 시스템의 안정한 적응제어기에 관하여)

  • 김종화;이만형;배종일
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1988.10a
    • /
    • pp.160-163
    • /
    • 1988
  • In this paper, the adaptive controller for the turret gun is discussed which uses model reference adaptive technique based on the Lyapunov direct method. Turret gun can be decomposed into two time-invariant SISO control systems. One is for the elevation angle control and the other is for the azimuth angle control under the assumption of independence each other. Thus we only consider here about the control loop for the elevation angle.

  • PDF

Monopulse Beamforming Network for Target Angle Tracking (표적 입사각 추적을 위한 모노펄스 빔형성 네트워크)

  • Moon Sung-Hoon;Han Dong-Seog;Cho Myeong-Je
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.41 no.1
    • /
    • pp.53-64
    • /
    • 2004
  • This paper proposes a monopulse beamforming network to estimate a target angle in interference conditions. The proposed system estimates the target direction of arrival (DOA) with two separate beamformings for azimuth and elevation with a planar may. The elevation is extracted from adaptive beamforming in the azimuth direction and the azimuth from adaptive beamforming in the elevation direction. Unlike conventional monopulse beamforming techniques using complex correction formulas or a cascaded architecture of an adaptive array and a mainlobe canceller, the proposed system is very efficient from the computational complexity. The advantage is from fact that the monopulse ratio of the proposed system does not depend on the adapted weights. Moreover, the proposed system can estimate the DOA of the target even for multiple mainlobe interferences since it does not need my kinds of mainlobe maintenance technique.

A study on indoor navigation system using localization based on wireless communication (무선통신기반 위치인식을 이용한 실내 내비게이션 시스템에 관한 연구)

  • Kim, Jung-Ha;Lee, Sung-Geun;Kim, Jong-Su;Kim, Jeong-Woo;Seo, Dong-Hoan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.1
    • /
    • pp.114-120
    • /
    • 2013
  • Recently, navigation systems based on wireless communication have been applied to the internal structures such as building or ship. If a stable azimuth information is obtained, these systems can effectively guide the direction of the user's progress through the information and then can improve the performance of guidance. Since conventional method which has acquired an azimuth information using geomagnetic and acceleration sensor(azimuth sensor hereafter) is sensitive to the effects of the magnetic field, it has unstable error range according to the surrounding environment. In order to improve these problems, this paper presents a new relative azimuth estimation algorithm using the displacement of a mobile node and its rotation angle based on Wireless communication. For the performance assessment of the proposed algorithm, experiments using rotating arm are performed and the results are confirmed that the proposed system can estimate the relative azimuth without using additional sensors.

별 가시도 해석을 이용한 별 추적기의 최적 배치 결정

  • Yim, Jo-Ryeong;Lee, Seon-Ho;Yong, Gi-Lyok;Rhee, Seung-Wu
    • Aerospace Engineering and Technology
    • /
    • v.4 no.1
    • /
    • pp.66-76
    • /
    • 2005
  • In this study, star visibility analysis of a star tracker is performed by using a statistical apprach. The probability of the Sun and the Earth proximity, the solar array masking probability, and the solar array blinding probability by the Sun light are obtained from the arbitrary chosen satellite positions as a function of a line of sight vector of the star tracker in several satellite attitude modes. This analysis demonstrates that the optimized star tracker accomodations can be determined to be an elevation angle -40o and two azimuth angles $-35^{circ}$ and $-150^{circ}$.

  • PDF

Design and Fabrication of 2-Dimensional Direction Finding Receiver Using Phase Comparison (2차원 위상비교 방향탐지를 위한 수신기 설계 및 제작)

  • Jeon, Jonghwa;Jo, Sungjin;Chae, Myoungho
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.23 no.1
    • /
    • pp.52-58
    • /
    • 2020
  • In this paper, a 2-dimensional phase comparison direction finding receiver was designed and fabricated. For 2-D comparison direction finding, direction finding formulas were derived from a uniformly arranged of four antennas. Based on this, a direction finding receiver was designed using Matlab simulink, and the direction finding receiver was fabricated. To analyze the performance of the designed direction finding receiver, the injection direction finding accuracy and simulation results were compared. As a result of the test, the fabricated direction finding receiver showed a maximum of 3° RMS precision, and the result of both tests showed similar trends. Also, it was confirmed that the direction finding accuracy of elevation angle is about 2.7 times better than azimuth angle, and both models performed well within 0.7° RMS at the boresight.

2D ISAR Imaging using PFA and CDT Algorithms (PFA와 CDT 알고리즘을 이용한 2차원 ISAR 영상 생성)

  • Yoo Ji-Hee
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.9
    • /
    • pp.906-913
    • /
    • 2004
  • FFT algorithm is the most popular ISAR imaging technique from radar data. It requires polar formatting technique to make a focused image of the target as MTRC(Moving Through Resolution Cell) causes a blurred image when the data is from the wide azimuth angle. But there exits the angle limit for the application of the polar formatting and we cannot obtain clear images if the range of the azimuth angle is too wide to process with polar, formatting. This paper analyses the relative merits of the polar formatting algorithm accompanied by interpolation to the CDT algorithm that needs not the interpolation.

Prediction of Aerodynamic Loads for NREL Phase VI Wind Turbine Blade in Yawed Condition

  • Ryu, Ki-Wahn;Kang, Seung-Hee;Seo, Yun-Ho;Lee, Wook-Ryun
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.2
    • /
    • pp.157-166
    • /
    • 2016
  • Aerodynamic loads for a horizontal axis wind turbine of the National Renewable Energy Laboratory (NREL) Phase VI rotor in yawed condition were predicted by using the blade element momentum theorem. The classical blade element momentum theorem was complemented by several aerodynamic corrections and models including the Pitt and Peters' yaw correction, Buhl's wake correction, Prandtl's tip loss model, Du and Selig's three-dimensional (3-D) stall delay model, etc. Changes of the aerodynamic loads according to the azimuth angle acting on the span-wise location of the NREL Phase VI blade were compared with the experimental data with various yaw angles and inflow speeds. The computational flow chart for the classical blade element momentum theorem was adequately modified to accurately calculate the combined functions of additional corrections and models stated above. A successive under-relaxation technique was developed and applied to prevent possible failure during the iteration process. Changes of the angle of attack according to the azimuth angle at the specified radial location of the blade were also obtained. The proposed numerical procedure was verified, and the predicted data of aerodynamic loads for the NREL Phase VI rotor bears an extremely close resemblance to those of the experimental data.