• 제목/요약/키워드: axisymmetric shell element

검색결과 53건 처리시간 0.027초

축대칭 쉘 요소의 유한요소 수식화와 지반공학적 활용 (Numerical Formulation of Axisymmetric Shell Element and Its Application to Geotechnical Problems)

  • 신호성;김진욱
    • 한국지반공학회논문집
    • /
    • 제36권12호
    • /
    • pp.27-34
    • /
    • 2020
  • 구조물에 대한 축대칭 쉘요소는 지반과 구조물의 상호작용에 대한 유한요소해석에서 효율성과 정확성을 높이게 된다. 본 논문에서는 Kirchhoff 이론에 근거한 축대칭 쉘요소의 힘평형 방정식과 모멘트 평형 방정식을 유도하였다. 축방향 변형에 대한 지배방정식은 등매개변수 형상함수를 이용한 Galerkin 수식화를 수행하고, 휨에 대한 지배방정식은 고차의 형상함수를 이용하였다. 개발된 축대칭 쉘요소는 지반과의 연계해석을 위하여 지반해석 유한요소 프로그램인 Geo-COUS에 결합하였다. 원형판과 액체 저장 탱크에 대한 예제해석을 통하여 개발된 요소의 정확성을 확인하였다. 그리고 축대칭 쉘요소에 대한 에너지 평형방정식을 제시하였다.

실베스터-전달강성계수법에 의한 축대칭 원통형 셸의 자유진동 해석 (Free Vibration Analysis of Axisymmetric Cylindrical Shell by Sylvester-Transfer Stiffness Coefficient Method)

  • 최명수;여동준
    • 동력기계공학회지
    • /
    • 제17권2호
    • /
    • pp.46-55
    • /
    • 2013
  • In this paper, the computational algorithm for free vibration analysis of an axisymmetric cylindrical shell is formulated by the Sylvester-transfer stiffness coefficient method (S-TSCM) which combines the Sylvester's inertia theorem and the transfer stiffness coefficient method. After the computational programs for obtaining the natural frequencies and natural modes of the axisymmetric cylindrical shell are made by the S-TSCM and the finite element method (FEM), the computational results which are natural frequencies, natural modes, and computational times by both methods are compared. From the computational results, we can confirm that S-TSCM has the reliability in the free vibration analysis of the axisymmetric cylindrical shell and is superior to FEM in the viewpoint of computational times.

축대칭 원통형 셸의 응력해석 (Stress Analysis of Axisymmetric Cylindrical Shell)

  • 최명수;여동준
    • 동력기계공학회지
    • /
    • 제16권6호
    • /
    • pp.45-51
    • /
    • 2012
  • In this paper, the algorithm for the static analysis of an axisymmetric cylindrical shell by using the finite element-transfer stiffness coefficient method (FE-TSCM) is suggested. TE-TSCM combining both the modeling procedure of the finite element method (FEM) and the transfer procedure of the transfer stiffness coefficient method (TSCM) has the advantages of FEM and TSCM. After computational programs are made by both FE-TSCM and FEM for the stress analysis of the axisymmetric cylindrical shell, we compare the numerical results by FE-TSCM with those of FEM for two computational models in order to confirm the trust of FE-TSCM.

축대칭 하중을 받는 원통형 셸의 동적응답 해석 (Dynamic Response Analysis of Cylindrical Shell with Axisymmetric Loading)

  • 최명수;여동준
    • 동력기계공학회지
    • /
    • 제17권6호
    • /
    • pp.33-39
    • /
    • 2013
  • It is very important to analyze the dynamic responses of the shell structures from the viewpoint of the design of shell structures with a variety of axisymmetric loadings. In this paper, the computational algorithm for the dynamic response analysis of an cylindrical shell with axisymmetric loading is formulated by the transfer mass coefficient method based on the transfer of mass coefficient. After the computational programs for obtaining the dynamic responses of cylindrical shells with axisymmetric loading are made by the transfer mass coefficient method and the finite element method, the computational results by both methods are compared. From the computational results, we can confirm that the transfer mass coefficient method has the effectiveness in the dynamic response analyses of cylindrical shells with a variety of axisymmetric loadings.

Stresses analyses of shell structure with large holes

  • Tian, Zongshu;Liu, Jinsong
    • Structural Engineering and Mechanics
    • /
    • 제6권8호
    • /
    • pp.883-899
    • /
    • 1998
  • The strength, deformation and buckling of a large engineering structure consisting of four ellipsoidal shells, two cylindrical shells with stiffening ribs and large holes, one conical shell and three pairs of large flanges under external pressure, self weight and heat sinks have been analysed by using two kinds of five different finite elements - four assumed displacement finite elements (shell element with curved surfaces, axisymmetric conical shell element with variable thickness, three dimensional eccentric beam element, axisymmetric solid revolutionary element) and an assumed stress hybrid element (a 3-dimensional special element developed by authors). The compatibility between different elements is enforced. The strength analyses of the top cover and the main vessel are described in the paper.

Harmonic Axisymmetric Thick Shell Element for Static and Vibration Analyses

  • Kim, Jin-Gon
    • Journal of Mechanical Science and Technology
    • /
    • 제18권10호
    • /
    • pp.1747-1754
    • /
    • 2004
  • In this study, a new harmonic axisymmetric thick shell element for static and dynamic analyses is proposed. The newly proposed element considering shear strain is based on a modified Hellinger-Reissner variational principle, and introduces additional nodeless degrees for displacement field interpolation in order to enhance numerical performance. The stress parameters selected via the field-consistency concept. are very important in formulating a trouble-free hybrid-mixed elements. For computational efficiency, the stress parameters are eliminated by the stationary condition and then the nodeless degrees are condensed out by the dynamic reduction. Several numerical examples confirm that the present element shows improved efficiency and yields very accurate results for static and vibration analyses.

축대칭 쉘 구조의 단순 유한요소 해석 (A Simple Finite Element Analysis of Axisymmetrical Shell Structures)

  • 김용희;이윤성
    • 한국농공학회지
    • /
    • 제45권2호
    • /
    • pp.68-77
    • /
    • 2003
  • Shell structure are widely used in a variety of engineering application and mathematical solution of shell structures are available only for a few special cases. The solution of shell structure is more complicated when it has such condition as winker foundation, variable thickness and other problem. In this paper, a simple finite element method is presented for the analysis of axisymmetric several types of shell structure subjected to axisymmetric loads and having uniform and varying wall thickness on elastic foundation. The method is based on the analogy with a beam on elastic foundation (BEF), foundation stiffness matrix where the foundation modulus and beam flexural rigidity are replaced by appropriate parameters pertaining to the shell under considerations. The technique is attractive for implementation on a numerical solution by means of a computer program coded in FORTRAN language with a few elements. To demonstrate this fact, it gives good results which compare well with SAP2000.

혼합 유한요소를 이용한 축대칭 쉘의 정.동적해석 (Static and Vibration Analysis of Axisymmetric Shells Using Mixed Finite Element)

  • 김진곤;노병국
    • 한국전산구조공학회논문집
    • /
    • 제16권2호
    • /
    • pp.165-172
    • /
    • 2003
  • 본 연구에서는 축대칭 쉘구조물의 정동적해석을 효과적으로 수행할 수 있는 새로운 유한요소를 제안하였다. 본 유한요소는 축대칭 쉘의 전단변형률을 고려하였으며, 쉘의 경계에서 기술할 수 있는 변수들만으로 표현되는 효율적인 형태의 수정된 혼합 변분이론에 바탕하여 유한요소정식화를 수행하였다. 또한, 변위장에 대해 무절점 자유도를 추가적으로 도입하여 요소의 수치적 성능을 크게 향상시켰다 계산의 효율성을 위해, 요소정식화의 최종단계에서 정치조건으로부터 응력매개변수들을 제거하고, 동적축약을 통하여 무절점 자유도 성분들 또한 최종적인 유한요소방정식에서 제거되어짐으로써, 일반적인 변위기저 요소와 같은 크기의 유한요소방정식을 얻을 수 있다. 몇 가지 수치예제들에 대한 해석을 통하여, 무절점 자유도와 변위장에 일치하는 적절한 응력매개변수를 가지는 제안된 혼합 축대칭 쉘요소가 정동적해석에서 대단히 정확하고 효율적임을 확인할 수 있었다

유한요소-전달강성계수법을 이용한 축대칭 원추형 셸의 구조해석 (Structural Analysis of Axisymmetric Conical Shells Using Finite Element-Transfer Stiffness Coefficient Method)

  • 최명수;변정환;여동준
    • 동력기계공학회지
    • /
    • 제19권1호
    • /
    • pp.38-44
    • /
    • 2015
  • Various finite elements have been studied and developed to analyze a variety of structures in the finite element method(FEM). The transfer stiffness coefficient method(TSCM) is an effective algorithm for structural analysis but the structures which can be applied were limited. In this paper, a computational algorithm for the structural analysis of axisymmetric conical shells under axisymmetric loading is formulated using the finite element-transfer stiffness coefficient method(FE-TSCM). The basic concept of FE-TSCM is the combination of the modeling technique of FEM and the transfer technique of TSCM. The FE-TSCM has all the advantages of both FEM and TSCM. After carrying out the structural analysis of axisymmetric conical shells using FEM, FE-TSCM, and analytical method we compare the computational results of FE-TSCM with those of the other methods in terms of computational accuracy.

자오 변형률에 근거한 2절검 축대칭 셸요소 (Two Node Meridional Strain-based Axisymmetric Shell Elements)

  • 유하상;신효철
    • 대한기계학회논문집A
    • /
    • 제21권6호
    • /
    • pp.925-932
    • /
    • 1997
  • Two shear-flexible curved axisymmetric shell elements with two nodes, LCCS(linear curvature and constant strain) and CCCS(constant curvature and constant strain) are designed based on the assumed meridional strain fields and shallow shell geometry. At the element level, meridional curvature, membrane strain and shear strain fields are assumed by using polynomials and the displacement fields are obtained by integrating the assumed strain fields along the shallowly curved meridian. The formulated elements have high order displacement fields consistent with the strain field. Several test problems are given to demonstrate the performance of the two elements. Analysis results obtained reveal that the elements are very accurate in the displacement and the stress predictions.