• 제목/요약/키워드: axisymmetric model

검색결과 434건 처리시간 0.026초

혼합형 유체요소와 무한요소를 이용한 3차원 축대칭 유체-구조물-지반 상호작용해석 (3-D Axisymmetric Fluid-Structure-Soil Interaction Analysis Using Mixed-Fluid-Element and Infinite-Element)

  • 김재민;장수혁;윤정방
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1999년도 가을 학술발표회 논문집
    • /
    • pp.257-266
    • /
    • 1999
  • This paper presents a method of seismic analysis for a cylindrical liquid storage structure on/in horizontally layered half.space considering the effects of the interior fluid and exterior soil medium in the frequency domain. To capture the essence of fluid-structure-soil interaction effects effectively, a mixed finite element with two-field (u, p) approximation is employed to model the compressive inviscid fluid, while the structure and soil medium are presented by the 3-D axisymmetric finite elements and dynamic infinite elements. The present FE-based method can be applied to the system with complex geometry of fluid region as well as with inhomogeneous near-field soil medium, since it can directly model both the fluid and the soil. For the purpose of verification, dominant peak frequencies in transfer functions for horizontal motions of cylindrical fluid storage tanks with rigid massless foundation on a homogeneous viscoelastic half.space are compared with those by two different added mass approaches for the fluid motion. The comparison indicates that the Present FE-based methodology gives accurate solution for the fluid-structure-soil interaction problem. Finally, as a demonstration of versatility of the present study, a seismic analysis for a real-scale LNG storage tank embedded in layered half.space is carried out, and its member forces along the height of the structure are compared with those by an added mass approach developed by the present writers.

  • PDF

Stability analyses of a cylindrical steel silo with corrugated sheets and columns

  • Sondej, Mateusz;Iwicki, Piotr;Wojcik, Michal;Tejchman, Jacek
    • Steel and Composite Structures
    • /
    • 제20권1호
    • /
    • pp.147-166
    • /
    • 2016
  • The paper presents comprehensive quasi-static stability analysis results for a real funnel-flow cylindrical steel silo composed of horizontally corrugated sheets strengthened by vertical thin-walled column profiles. Linear buckling and non-linear analyses with geometric and material non-linearity were carried out with a perfect and an imperfect silo by taking into account axisymmetric and non-axisymmetric loads imposed by a bulk solid following Eurocode 1. Finite element simulations were carried out with 3 different numerical models (single column on the elastic foundation, 3D silo model with the equivalent orthotropic shell and full 3D silo model with shell elements). Initial imperfections in the form of a first eigen-mode for different wall loads and from 'in-situ' measurements with horizontal different amplitudes were taken into account. The results were compared with Eurocode 3. Some recommendations for the silo dimensioning were elaborated.

Bearing capacity at the pile tip embedded in rock depending on the shape factor and the flow

  • Ana S. Alencar;Ruben A. Galindo;Miguel A. Millan
    • Computers and Concrete
    • /
    • 제31권5호
    • /
    • pp.443-455
    • /
    • 2023
  • This is a research analyses on the bearing capacity at a pile tip embedded in rock. The aim is to propose a shape coefficient for an analytical solution and to investigate the influence of the plastic flow law on the problem. For this purpose, the finite difference method is used to analyze the bearing capacity of various types and states of rock masses, assuming the Hoek & Brown failure criterion, by considering both plane strain and an axisymmetric model. Different geometrical configurations were adopted for this analysis. First, the axisymmetric numerical results were compared with those obtained from the plane strain analytical solution. Then the pile shape influence on the bearing capacity was studied. A shape factor is now proposed. Furthermore, an evaluation was done on the influence of the plastic flow law on the pile tip bearing capacity. Associative flow and non-associative flow with null dilatancy were considered, resulting in a proposed correlation. A total of 324 cases were simulated, performing a sensitivity analysis on the results and using the graphic output of vertical displacement and maximum principal stress to understand how the failure mechanism occurs in the numerical model.

블랙홀 자기권 모델 30년 (The Development of the Black Hole Magnetosphere Model in the Last Thirty Years)

  • 박석재
    • 천문학논총
    • /
    • 제15권1호
    • /
    • pp.1-13
    • /
    • 2000
  • Since Goldreich and Julian's pioneering work in 1969, the pulsar magnetosphere theory has been dramatically developed for theorists to possess an elegant axisymmetric, stationary model. Based on this development the black hole magnetosphere theory has also been established in the last 30 years. Such theoretical developments will be reviewd equation by equation in this paper.

  • PDF

Two-dimensional continuum modelling of an inductively coupled plasma reactor

  • Kim, Dong-Ho;Shung, Won-Young;Kim, Do-Hyun
    • 한국결정성장학회지
    • /
    • 제10권2호
    • /
    • pp.128-133
    • /
    • 2000
  • Numerical analysis of the transport phenomena in an inductively coupled plasma reactor was conducted with two-dimensional axisymmetric model including the electromagnetic field model, electron and species density models. The spatial distribution of the charged species in the ion flux to the wafer have been calculated to examine the influence of the process conditions including antenna and reactor geometry. The antenna radius had a significant influence on the plasma state and axial ion flux distribution.

  • PDF

THEORETICAL CONSIDERATIONS ON THE VARIABILITY OF ACTIVE GALACTIC NUCLEI

  • PARK SEOK JAE
    • 천문학회지
    • /
    • 제29권spc1호
    • /
    • pp.97-98
    • /
    • 1996
  • Variability of active galactic nuclei is now a well-known phenomenon. This remains to be fully explained by a theoretical model of the central engine. Time scales of AGN variability seem to range continuously from hours up to months. The short time scale variability must be related to the phenomena on the event horizon of the black hole, while the long one to those in the accretion disk or surrounding matter. Based on the axisymmetric, nonstationary model of the central engine, we discuss theoretical considerations on the variability of active galactic nucleus.

  • PDF

MAGNETOHYDRODYNAMIC WAVE PROPAGATION IN THE "IONOSPHERE" OF THE CENTRAL BLACK HOLE IN AN ACTIVE GALACTIC NUCLEUS

  • Park, Seok-Jae
    • 천문학논총
    • /
    • 제7권1호
    • /
    • pp.71-77
    • /
    • 1992
  • An axisymmetric, stationary electrodynamic model of the central engine of an active galactic nucleus has been well formulated by Macdonald and Thorne. In this model the relativistic region around the central black hole must be filled by highly conducting plasma and the equations of magnetohydrodynamics are then satisfied. In this paper we analyze magnetohydrodynamic wave propagation in this region. We find that there are three distinct types of waves - the Alfven wave and two magnetosonic waves. The wave equations turn out to be not very different from those in nonrelativistic case except they are redshifted.

  • PDF

Numerical analysis for supercavitating flows around axisymmetric cavitators

  • Kwack, Young Kyun;Ko, Sung Ho
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제5권3호
    • /
    • pp.325-332
    • /
    • 2013
  • Diffuse interface model for numerical analysis was used to compute supercavitating flows around various cavitators. The ambient pressures of 2 atm permitted cavitation studies in a range of cavitation number, ${\sigma}=0.1$ to 1.0 on selected conical and disk-headed cavitors. The computed results were compared with relation by Reichardt. Drag coefficient obtained from pressure forces acting on the cavitator also compared well with those obtained from analytical relations.

PLASMA WAVE PROPAGATION IN THE BLACK HOLE IONOSPHERE

  • Park, Seok-Jae
    • 천문학회지
    • /
    • 제28권2호
    • /
    • pp.147-152
    • /
    • 1995
  • An axisymmetric, stationary electrodynamic model of the central engine of an active galactic nucleus has been well formulated by Macdonald and Thorne. In this model the relativistic region around the central black hole must be filled by highly conducting plasma. We analyze plasma wave propagation in this region and discuss the results. We find that the ionosphere cannot exist right outside of the event horizon of the black hole. Another interesting aspect is that certain resonance phenomena can occur in this case.

  • PDF

Computing turbulent far-wake development behind a wind turbine with and without swirl

  • Hu, Yingying;Parameswaran, Siva;Tan, Jiannan;Dharmarathne, Suranga;Marathe, Neha;Chen, Zixi;Grife, Ronald;Swift, Andrew
    • Wind and Structures
    • /
    • 제15권1호
    • /
    • pp.17-26
    • /
    • 2012
  • Modeling swirling wakes is of considerable interest to wind farm designers. The present work is an attempt to develop a computational tool to understand free, far-wake development behind a single rotating wind turbine. Besides the standard momentum and continuity equations from the boundary layer theory in two dimensions, an additional equation for the conservation of angular momentum is introduced to study axisymmetric swirl effects on wake growth. Turbulence is simulated with two options: the standard ${\kappa}-{\varepsilon}$ model and the Reynolds Stress transport model. A finite volume method is used to discretize the governing equations for mean flow and turbulence quantities. A marching algorithm of expanding grids is employed to enclose the growing far-wake and to solve the equations implicitly at every axial step. Axisymmetric far-wakes with/without swirl are studied at different Reynolds numbers and swirl numbers. Wake characteristics such as wake width, half radius, velocity profiles and pressure profiles are computed. Compared with the results obtained under similar flow conditions using the computational software, FLUENT, this far-wake model shows simplicity with acceptable accuracy, covering large wake regions in far-wake study.