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ABSTRACT

An axisymmetric, stationary electrodynamic model of the central engine of
an active galactic nucleus has been well formulated by Macdonald and Thorne.
In this model the relativistic region around the central black hole must be filled
by highly conducting plasma and the equations of inagnetohydrodynamics are
then satisfied. In this paper we analyze magnetohydrodynamic wave propa-
gation in this region. We find that there are three distinct types of waves
— the Alfvén wave and two magnetosonic waves. The wave equations turn

out to be not very different from those 1n nonrelativistic case except they are
redshifred.

L INTRODUCTION

Most astrophysicists believe that central engines in active galactic nuclei (hereafter
AGNs) are related to supermassive black holes (e.g., see Begelman et al. 1984). An
axisymmetric, stationary electrodynamic model was well formulated in the language of
the “3+1”-spacetime formalism by Macdonald and Thorne (1982, hereafter MT), which
consists of the supermassive black hole surrounded by a magnetized accretion disk. The
magnetosphere of the Macdonald and Thorne (hereafter M-T) model can be divided into
three regions (E, B, p., and j have their usual definitions in electrodynamics):

1) degenerate region; the stretched event horizon of the black hole and the surface of the
magnetized accretion disk are degenerate,

E-B=0. (1.1a)
2) force-free region; the zones closest to the black hole are force-free,
E-B=0 and p.E+jx B =0. (1.18)

3)acceleration region; the zones farther from the black hole are called the acceleration
region.

These regions must be filled by highly conducting plasma and in the force-free region,
in particular, the equations of magnetohydrodynamics (hereafter MHD) will be well
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satisfied because condition (1.15) guarantees infinite conductivity of plasma. In this
paper we will call this region the “ionosphere” of the black hole. Concentrating on low
frequency phenomena, we will investigate MHD wave propagation in the ionosphere. In
§11 we will summarize the electromagnetic fields in the ionosphere. In §III we will derive
fundamental equations and consider astrophysical implications. Throughout this paper
(— + +-+) signs will be used with units such that ¢ = G = 1. Greek indices will run 0 to
3 while Latin indices 1 to 3.

II. MAGNETOSPHERE OF THE MACDONALD-THORNE MODEL

In black hole astrophysics it is useful to employ a fiducial observer (hereafter FIDO)
who measures physical quantities in his neighborhood. For the full analysis readers are
directed to Thorne, Price and Macdonald (1986, hereafter TPM). Each FIDO is at rest
with respect to the black hole and he never moves from his fixed location. Throughout
this paper we define all the electrodynamic quantities at a point in the ionosphere as
those measured by the FIDO at that point, using his own proper time 7. Since 7 is not a
global coordinate time, we also use the universal time ¢ to define a slicing of spacetime.
They are related to each other by the lapse function « ,

dr
= —. 2.1
The M-T model is axisymmetric and stationary. Therefore, it 1s based on two assump-
tions such as (MT, eq. [4.1]),

m-Vf=0, L.f=0 (2.2a)

and o) ot
— = ; =0 _—= f =0 .2b
at Tot ’ (2:20)

where £ means the Lie derivative, m is a Killing vector of the axisymmetry, and f, f are
any scalar and vector, respectively.

In this model the total electric current passing downward through an m-loop, I(x),
and total magnetic flux passing upward through an m-loop, ¥(x), are defined by (MT,

eq. [4.2]),
I(x) = —/Eaj -dX (2.3a)

and
¥(x) = / B -dX, (2.3b)
b

where ¥ is any surface surrounded by an m-loop, but not intersecting the black hole,
and dX is the infinitesimal normal vector of the surface.

In terms of I and ¥ the poloidal and toroidal components of the electric and magnetic
fields seen by FIDOs in the ionosphere are (MT, egs. [4.4], [4.5], [4.8], and [4.9])

ET =0, (2.4a)
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Ef = E, (2.4b)
BT = ~§—ée¢, (2.4¢)
and .-
es X
B? = ——”—27&—3——, (2.4d)

where & is the magnitude of m and ey is the unit toroidal vector (see eq. [3.4c]).

ITI. MAGNETOHYDRODYNAMIC WAVE EQUATIONS

1. Maxwell Equations in the Ionosphere

In this paper we assume that the hole is so slowly-rotating that we may use the
Schwarzschild metric as a good approximation. Since the rotational energy of the black
hole in the M-T model is being extracted by the Blandford-Znajek process (Blandford
and Znajek 1977), this assumption may fit well at the end of the evolution of galactic
nuclei.

From the point of view of the 3+41-formalism, spacetime i1s a foliation of spacelike
hyperspaces connected by timelike curves. If n# is the orthonormal timelike vector of the
time slice, then v,,, the intrinsic curvature of the hyperspace, is defined by

TYpv = Guv + Ny, (31)

where g,, means the usual 4-dimensional spacetime metric tensor. Now g,, is set by
(Arnowitt, Deser, and Misner 1962)

A —a?+ BB B
mw_( A ﬁ)’ (3.2)

where ¢ the shift vector with 8; = 7,,3. According to our assumption, nonvanishing
coefficients of the metric in the spherical coordinates (r, 6, ¢) are close to those of the
Schwarzschild metric,

1/2
a~|1-— ™M , (3.3a)
r
oM\ M2
Yrr & (1 - "‘”‘) , (33b)
r
Yoo = 77, (3.3¢)
and
Yop = T2sin?6. (3.3d)

Notice also that @, the magnitude of the Killing vector m, now becomes equal to rsind.
In terms of these the FIDO frame in absolute space will be (TPM, eq. [2.3q])

1/2
e o~ (1 - 3&) 9 (3.4a)

r or’
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10
and -
.~ i 3.
¢ rsind Jyp (3.4c)

In 3+1-electrodynamics the field tensor F'#¥ splits into the electric field E and the
magnetic field B which reside in hyperspace and evolve with the time. If we fix the
observer as the FIDO at the given point around a Schwarzschild black hole, the Maxwell
equations for the ionosphere are given by (TPM, eq. [2.10])

V-E = 47p., (3.5a)
V-B=0, (3.5b)
V x (aE) = —B, (3.5¢)
and
V x (aB) = E + 47qj. (3.5d)

2. Magnetohydrodynamic Wave Equations in the Ionosphere

The continuity equation and Euler equation of plasma are given by

1.
Ep+ V.-(pv) =0, (3.6a)
and : )
—v=-V —(VxB . 3.6b
pv P+-(VxB)xB (3.6b)

respectively, where p is the density, v is the velocity, and P is the internal pressure of
plasma in the ionosphere. Here we neglect gravitational acceleration which 1s equal to
—Va/a.

As usual, we consider small perturbations such as,

p = po+p1, (3.7a)
P=Py+ Py, (3.78)
v =vy, (3.7¢)
and
B = By + By, (3.7d)

where the 0-suffixed quantities are the unperturbed and the 1-suffixed are small pertur-
bations. For simplicity we assume that the unperturbed quantities are constant, which
can be justified due to the stationarity of the M-T model. In equation (3.7) we do not
consider E-perturbation because the electric force can be completely negligible under
MHD approximation.
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Substituting equation (3.7) into equations (3.5) and (3.6), we get the first-order equa-
tions

1.
'(;pl +p0V'V1 :0, (38(1)
L., 1
po—Vv1+v;Vp — —(V x B)) x By =0, (3.8b)
«a 4T
and |
“B; -V xv, xBy=0, (3.8¢)
o

where we define speed of sound as
15 (3.84)
Po

il

2
Uy

3. Plane Wave Solutions in the Ionosphere

A FIDO observes plasma based on the orthonormal basis of his inertial frame, equation
(3.4). Therefore, we have

By = B? + B” = Bje; + Ble; + Bfe, (3.9)

Let the angle between Bj and ez be x which is set by

1 1
P —I_B ey = *1——————————.— s VW, 3.10
o8 By 0°¢€ cos 27 r Bgsind €4 ( )

Y, €

A

> e

eé e

Figure 1. The definitions of the angles £ and Y
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With fixed e;, the orthonormal vector in time-axis, we employ another spatial or-
thonormal basis of the rectangular coordinate (x, y, z) for our FIDO to analyze equation
(3.9) more easily. Let the new y-axis coincide with the r-axis and Bg lie in the y-z plane
(see Fig. 1). Let the angle between the f-axis and the new z-axis be £ which is set by

B¢ oM\ "M anl
— N 1 _ M
& = tan i tan [(1 - ) o U (3.11)
Therefore, we have
e; = egcosé + e4siné, (3.12q)
€y = €7, (3.12b)
and
e; = —egsing + egcos¢, (3.12¢)
We also have
vy = vfei. + v’feg + vfeg (3.13a)
and
B, = fef + Bi’eg + Bf-eg. (3.13[))

As a trial solution, let us suppose that plane waves can propagate in two directions like
the Alfvén waves. Let all the variables depend on z and 7 only. Then, we can decompose
equation (3.9) into their components. Allowing derivatives with respect to z and 7 only,
we obtain

9 _; 9
E;Bl = Bocosx-(;)—zvf, (3.14a)
0 ; Bgcosy & _.
9 = 2 p#, 3.14b
Brvl Arpy 9z ! ( )
;—TBf = Bocosxgzvg - Bosinx;% vi, (3.14¢)
8 ;s Bgcosy 4 _;
—of = —BY. 3.14d
BTUI 4mpy Oz ! ( )
a v 9 Bosiny 9 _;
i %9 2 gy 3.14
ar ! P20 sz 4mpy Bz ! ( )
and 5 5
—p1 = —po——i. 3.14
Equations (3.14a) and (3.14b) yield
2 2.nc2v 52
O pi = Bocosx O pe (3.15q)

812 Y T T 4mpy 0227
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which shows that v{ and Bf propagate with velocity

Bgcosy

VAo

Equations (3.14¢), (3.14d), (3.14e), and (3.14f) are simultaneous equations of 4 un-
knowns. Seeking plane wave solutions

VACOSY =

(3.15b)

~ eilwT—k2) (3.16)

for all 4 unknowns, we may replace the operators /97 and 8/8z by iw and —ik. Then
we obtain the system of linear homogeneous equations

—w —kBgcosy kBgsiny 0 Bf

kBycosy /4T pow 0 0 Uf _

—k Bocosy/4m 0 pow —kv? vi | 0. (3.17)
0 0 —pok w p

For this equation to have a solution, the determinant of the 4 x 4 matrix must be zero.
Therefore, we have

U? — (v4 +v2)U? + v4vicos’y = 0, (3.18a)
where U is the phase velocity
U= “—,: (3.18b)

If y = 0, we have two types of wave, U? = v%4 and U? = v?. If x = 7/2, we have only
one type of wave, U? = v4 + v2. Rewriting the dispersion relation (3.18) as

(U? —v2)(U? - v?) = v4v2sin?y, (3.19)

we notice that one root of this equation exceeds the greater of v4 and v? and the other
root is less than the smaller of v%4 and vZ.

Equations (3.14) are not very different from those in nonrelativistic case except they
are redshifted. In general, therefore, there are three distinct types of waves — the Alfvén
wave and two magnetosonic waves.
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