• Title/Summary/Keyword: axis body

Search Result 567, Processing Time 0.034 seconds

Dynamics of a Micro Three-axis Ring Gyroscope Considering Electrode Effects (전극 효과를 고려한 마이크로 3축 링 자이로스코프의 동역학)

  • 김창부;강태민
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.1
    • /
    • pp.64-72
    • /
    • 2004
  • In this paper. we analyse and present electro-mechanical dynamic characteristics of a micro-machined vibrating silicon ring gyroscope which can measure angular velocities about three orthogonal axes. The ring gyroscope has a ring connected to the gyroscope main body by support-ligaments which are arranged with cyclic symmetry. The natural modes of its vibration can be distinguished into the in-plane motion and the out-of-plane motion which are coupled by the gyro-effect due to the rotation of the gyroscope main body. The motions of the ring are electro-statically derived. sensed and balanced by electrodes. The equations of motion are formulated. The measuring method of angular velocities by force-to-rebalance is presented. The dynamic characteristics of a ring gyroscope are calculated and compared.

Analysis of Dynamic Behavior of Spiral Grooved Air-Dynamic Bearings (나선홈을 가진 공기 동압베어링의 동역학적 거동 해석)

  • 신용호;최우천
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.498-501
    • /
    • 2000
  • Air dynamic bearings are inherently unstable in dynamic behavior due to the varying angle of a force produced and the nonlinear characteristics of stiffness. In this study, such dynamic behavior is obtained and compared with experimental results. A body axis coordinate system is employed to avoid the change of a moment of inertia. FDM is used to calculate the pressure distribution on the bearing surface and then the force acting on the rotor was calculated by integrating the pressure distribution. By integrating accelerations which are calculated from the equations of motion using the 4th order Runge-Kutta method, the pose of the bearing at each time step is obtained.

  • PDF

Dynamics of a Micro Three-Axis Ring Gyroscope (마이크로 3축 링 자이로스코프의 동역학)

  • Park, Sang-Hyun;Kim, Chang-Boo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.312.1-312
    • /
    • 2002
  • In this paper, we analyse and present mechanical dynamic characteristics of a micro-machined vibrating silicon ring gyroscope which can measure rates of turn about three orthogonal axes. The ring gyroscope has a ring connected to the gyroscope main body by support-ligaments which are arranged with cyclic symmetry. The natural modes of its vibration can be distinguished into the in-plane motion and the out-of-plane motion which are coupled by the gyro-effect due to the rotation of the gyroscope main body. (omitted)

  • PDF

Evaluation of Whole-Body Vibration and Occupational Noise for Excavator Drivers (굴삭기 운전자의 전신진동 및 작업소음 평가)

  • Youn, Jeong-Taek;Park, Sang-Kyu
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.125-131
    • /
    • 2000
  • This study was performed to evaluate the whole-body vibration and occupational noise for excavator drivers. Measurement, evaluation and assessment were based on the ISO 2631 and OSHA. Average vibration level was 0.65m/$s^2$(z axis) for breaking work and 0.36 m/$s^2$(z axis) for excavating work. Vibration levels during breaking work exceed the health guidance caution zone and this means that the drivers are exposed to potential health risks. Average daily noise exposure level was 86.4 dB(A) for breaking work and 84.6 dB(A) for excavating work.

  • PDF

Angular Kinematic and Cross-correlation Analysis between Body Segments and Ski among Alpine Ski Turning Techniques (알파인 스키 회전기술에 따른 인체분절과 스키 간 각운동학 및 상호상관분석)

  • Kim, Joo-Nyeon
    • Korean Journal of Applied Biomechanics
    • /
    • v.30 no.3
    • /
    • pp.205-215
    • /
    • 2020
  • Objective: The purpose of this study was to investigate the relative angles and cross-correlation between body segments and ski among four alpine ski turning techniques. Method: 19 alpine ski instructors participated in this study. Each skier asked to perform 4- types of turning technique, classified by radius and level. 8 inertial measurement units were used to measure orientation angle of segment and ski on the anteroposterior and vertical axis. Results: Significant differences were found between types of turning in the segments-ski relative angle on the anteroposterior and vertical axis (p<.05). Although, cross-correlation showed a high correlation between angles of segment and ski, there were significant differences between types of turning. Conclusion: Based on our results, the relative movement and timing between each segment and ski is different according to the turning techniques, so the training methods should be applied differently.

Dynamics of a Micro Three-Axis Ring Gyroscope Considering Electrode Effects (전극 효과를 고려한 마이크로 3축 링 자이로스코프의 동역학)

  • 강태민;김창부
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.970-976
    • /
    • 2003
  • In this paper, we analyse and present electro-mechanical dynamic characteristics of a micro-machined vibrating silicon ring gyroscope which can measure angular velocities about three orthogonal axes. The ring gyroscope has a ring connected to the gyroscope main body by support-ligaments which are arranged with cyclic symmetry. The natural modes of its vibration can be distinguished into the in-plane motion and the out-of-plane motion which are coupled by the gyro-effect due to the notation of the gyroscope main body. The motions of the ring are electro-statically derived, sensed and balanced by electrodes. The equations of motion are formulated. The scheme of angular velocities sensing by force-to-rebalance method is presented. The dynamic characteristics of a ring gyroscope are calculated and compared.

  • PDF

Attitude Stabilization of a Quad-Rotor UAV Using a Two-camera Vision System

  • Won, Dae-Yeon;Tahk, Min-Jea
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.9 no.1
    • /
    • pp.76-84
    • /
    • 2008
  • This paper is mainly concerned with the vision-based attitude stabilization of a quad-rotor UAV. The methods for attitude control rely on computing the roll and pitch angles of the vehicle from a two-camera vision system. One camera is attached to the body-fixed x-axis and the other to the body-fixed y-axis. The attitude computation for the quad-rotor UAV is performed by image processing consisting of Canny edge and Hough line detection. A proportional and integral controller is employed for the attitude hold autopilot. In this paper, the quad-rotor UAV is modeled by 6-DOF nonlinear equations of motion that includes rotor aerodynamics with blade element theory. The performance of the proposed method is evaluated through 3D environmental numerical simulations.

Performance Analysis of Quaternion-based Least-squares Methods for GPS Attitude Estimation (GPS 자세각 추정을 위한 쿼터니언 기반 최소자승기법의 성능평가)

  • Won, Jong-Hoon;Kim, Hyung-Cheol;Ko, Sun-Jun;Lee, Ja-Sung
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2092-2095
    • /
    • 2001
  • In this paper, the performance of a new alternative form of three-axis attitude estimation algorithm for a rigid body is evaluated via simulation for the situation where the observed vectors are the estimated baselines of a GPS antenna array. This method is derived based on a simple iterative nonlinear least-squares with four elements of quaternion parameter. The representation of quaternion parameters for three-axis attitude of a rigid body is free from singularity problem. The performance of the proposed algorithm is compared with other eight existing methods, such as, Transformation Method (TM), Vector Observation Method (VOM), TRIAD algorithm, two versions of QUaternion ESTimator (QUEST), Singular Value Decomposition (SVD) method, Fast Optimal Attitude Matrix (FOAM), Slower Optimal Matrix Algorithm (SOMA).

  • PDF

Vision-Based Real-Time Motion Capture System

  • Kim, Tae-Ho;Jo, Kang-Hyun;Yoon, Yeo-Hong;Kang, Hyun-Duk;Kim, Dae-Nyeon;Kim, Se-Yoon;Lee, In-Ho;Park, Chang-Jun;Leem Nan-Hee;Kim, Sung-Een
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.171.5-171
    • /
    • 2001
  • Information that is acquired by adhered sensors on a body has been commonly used for the three-dimensional real-time motion capture algorithm. This paper describes realtime motion capture algorithm using computer vision. In a real-time image sequence, human body silhouette is extracted use a background subtraction between background image and the reference image. Then a human standing posture whether forward or backward is estimated by extraction of skin region in the silhoutte. After then, the principal axis is calculated in the torso and the face region is estimated on the principal axis. Feature points, which are essential condition to track the human gesture, are obtained ...

  • PDF

Odontoid Synchondrosis Fracture Treated by C1-2 Polyaxial Screw-Rod Fixation

  • Muthukumar, Natarajan
    • Journal of Korean Neurosurgical Society
    • /
    • v.55 no.4
    • /
    • pp.212-214
    • /
    • 2014
  • The synchondrosis between the dens and the body of axis normally fuses between 5 and 7 years of age. Until this age, synchondrosis fractures can occur in children. Most synchondrosis fractures are conventionally treated by external immobilization alone. We report a 10-year-old child with odontoid synchondrosis fracture who was treated by C1 lateral mass and C2 pars screw rod fixation with a successful outcome and discuss the possible reasons for occurrence of odontoid synchondrosis fracture in this older child as well as the indications for surgery in this condition.