• Title/Summary/Keyword: axially moving

Search Result 76, Processing Time 0.034 seconds

Stability Analysis of Axially Moving Beam with Attached Mass (축방향으로 이송되는 부가질량을 가진 보의 안정성 해석)

  • Hur, Kwan-Do;Son, In-Soo;Ahn, Sung-Jin
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.1
    • /
    • pp.56-61
    • /
    • 2012
  • The dynamic instability and natural frequency of axially moving beam with an attached mass are investigated. Thus, the effects of an attached mass on the stability of the moving beam are studied. The governing equation of motion of the moving beam with an attached mass is derived from the extended Hamilton's principle. The natural frequencies are investigated for the moving beams via the Galerkin method under the simple support boundary. Numerical examples show the effects of the attached mass and moving speed on the stability of moving beam. Moreover, the lowest critical moving speeds for the simple supported conditions have been presented. The results can be used in the analysis of axially moving beams with an attached mass for checking the stability.

Dynamic Characteristics of the Beam Axially Moving over Multiple Elastic Supports (다수의 탄성지지대 위를 축방향으로 이동하는 보 구조물의 동특성 해석)

  • 김태형;이우식
    • Proceedings of the KSR Conference
    • /
    • 2002.10a
    • /
    • pp.125-130
    • /
    • 2002
  • This paper investigates the dynamic characteristics of a beam axially moving over multiple elastic supports. The spectral element matrix is derived first for the axially moving beam element and then it is used to formulate the spectral element matrix for the moving beam element with an interim elastic support. The moving speed dependance of the eigenvalues is numerically investigated by varying the applied axial tension and the stiffness of the elastic supports. Numerical results show that the fundamental eigenvalue vanishes first at the critical moving speed to generate the static instability.

  • PDF

Dynamic stiffness matrix method for axially moving micro-beam

  • Movahedian, Bashir
    • Interaction and multiscale mechanics
    • /
    • v.5 no.4
    • /
    • pp.385-397
    • /
    • 2012
  • In this paper the dynamic stiffness matrix method was used for the free vibration analysis of axially moving micro beam with constant velocity. The extended Hamilton's principle was employed to derive the governing differential equation of the problem using the modified couple stress theory. The dynamic stiffness matrix of the moving micro beam was evaluated using appropriate expressions of the shear force and bending moment according to the Euler-Bernoulli beam theory. The effects of the beam size and axial velocity on the dynamic characteristic of the moving beam were investigated. The natural frequencies and critical velocity of the axially moving micro beam were also computed for two different end conditions.

MATHEMATICAL MODELLING FOR THE AXIALLY MOVING MEMBRANE WITH INTERNAL TIME DELAY

  • Kim, Daewook
    • East Asian mathematical journal
    • /
    • v.37 no.1
    • /
    • pp.141-147
    • /
    • 2021
  • In [1], we studied the PDE system with time-varing delay. Time delay occurs due to loosening in a high-speed moving axially directed membrane (string, belt, or plate) at production. Our purpose in this work derives a mathematical model with internal time delay. First, we consider the physical phenomenon of axially moving membrane with respect to kinetic energy, potential energy and work done. By the energy conservation law in physics, we get the second order nonlinear PDE system with internal time delay.

The Rate of Change of an Energy Functional for Axially Moving Continua

  • Yang, Kyung-Jinn;Hong, Keum-Shik;Matsuno, Fumitoshi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2707-2712
    • /
    • 2003
  • In this paper, with the utilization of a three-dimensional version of Leibniz’s rule, the procedure of deriving the time rate of change of an energy functional for axially moving continua is investigated. It will be shown that the method in [14], which describes the way of getting the time rate of change of an energy functional in Eulerian description, and subsequent results in [10, 11] are not complete. The key point is that the time derivatives at boundaries in the Eulerian description of axially moving continua should take into account the velocity of the moving material itself. A noble way of deriving the time rate of change of the energy functional is proposed. The correctness of the proposed method has been confirmed by other approaches. Two examples, one-dimensional axially moving string and beam equations, are provided for the purpose of demonstration. The results following the procedure proposed and the results in [14] are compared.

  • PDF

Dynamic Characteristics of the Beam Axially Moving Over Multiple Elastic Supports (다수의 탄성지지대 위를 이동하는 보 구조물의 동특성 해석)

  • 김태형;이우식
    • Journal of the Korean Society for Railway
    • /
    • v.6 no.2
    • /
    • pp.129-134
    • /
    • 2003
  • This paper investigates the dynamic characteristics of a beam axially moving over multiple elastic supports. The spectral element matrix is derived first for the axially moving beam element and then it is used to formulate the spectral element matrix for the moving beam element with an interim elastic support. The moving speed dependance of the eigenvalues is numerically investigated by varying the applied axial tension and the stiffness of the elastic supports. Numerical results show that the fundamental eigenvalue vanishes first at the critical moving speed to generate the static instability.

Longitudinal Vibration Analysis of an Axially Moving Material by Using the Assumed Modes Method (가정모드법을 이용한 축방향으로 이동하는 연속체의 종진동 해석)

  • 정진태;허진욱;한창수
    • Journal of KSNVE
    • /
    • v.10 no.1
    • /
    • pp.138-143
    • /
    • 2000
  • Longitudinal vibration of an axially moving material is investigated by using the assumed modes method. To circumvent a difficulty in choosing the comparison functions which satisfy the boundary conditions, the assumed modes method is adopted by which equations of motion are discretized. Based on the discretized equations, the complex eigenvalue problem is solved and then the effects of the translating velocity on the natural frequencies and modes are analyzed.

  • PDF

Free vibration analysis of axially moving beam under non-ideal conditions

  • Bagdatli, Suleyman M.;Uslu, Bilal
    • Structural Engineering and Mechanics
    • /
    • v.54 no.3
    • /
    • pp.597-605
    • /
    • 2015
  • In this study, linear vibrations of an axially moving beam under non-ideal support conditions have been investigated. The main difference of this study from the other studies; the non-ideal clamped support allow minimal rotations and non-ideal simple support carry moment in minimal orders. Axially moving Euler-Bernoulli beam has simple and clamped support conditions that are discussed as combination of ideal and non-ideal boundary with weighting factor (k). Equations of the motion and boundary conditions have been obtained using Hamilton's Principle. Method of Multiple Scales, a perturbation technique, has been employed for solving the linear equations of motion. Linear equations of motion are solved and effects of different parameters on natural frequencies are investigated.

Stability Analysis of Axially Moving Simply Supported Pipe Conveying Fluid (축방향으로 이송되는 유체유동 단순지지 파이프의 안정성 해석)

  • Son, In-Soo;Hur, Kwan-Do;Lee, Sang-Pill;Cho, Jeong-Rae
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.5
    • /
    • pp.407-412
    • /
    • 2012
  • The dynamic instability and natural frequency of an axially moving pipe conveying fluid are investigated. Thus, the effects of fluid velocity and moving speed on the stability of the system are studied. The governing equation of motion of the moving pipe conveying fluid is derived from the extended Hamilton's principle. The eigenvalues are investigated for the pipe system via the Galerkin method under the simple support boundary. Numerical examples show the effects of the fluid velocity and moving speed on the stability of system. Moreover, the lowest critical moving speeds for the simply supported ends have been presented.

Transverse Vibration Control of an Axially Moving String (축방향으로 주행하는 현의 횡진동 제어)

  • Ryu, Doo-Hyun;Park, Young-Pil
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.579-584
    • /
    • 2000
  • In this study. the time varying boundary control using the right boundary transverse motion on the basis of the energy flux between the moving string and the boundaries is suggested to stabilize the transverse vibration of an axially moving string. The effectiveness of the active boundary control is showed through experimental results. Sliding mode control is adopted in order to achieve velocity tracking control of the time varying right boundary to dissipate vibration energy of the string effectively. For the unmoving and moving string at various velocity under various tension the performance of the transverse vibration control using the time varying right boundary control with the suggested control scheme is experimentally demonstrated.

  • PDF