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MATHEMATICAL MODELLING FOR THE AXIALLY

MOVING MEMBRANE WITH INTERNAL TIME DELAY

Daewook Kim

Abstract. In [1], we studied the PDE system with time-varing delay.

Time delay occurs due to loosening in a high-speed moving axially di-
rected membrane (string, belt, or plate) at production. Our purpose in

this work derives a mathematical model with internal time delay. First,

we consider the physical phenomenon of axially moving membrane with
respect to kinetic energy, potential energy and work done. By the energy

conservation law in physics, we get the second order nonlinear PDE system

with internal time delay.

1. Introduction

Many PDE systems induced the mathematical modeling on the mass produc-
tion process are studied on sense of mathematical analysis (well-posedness,non-
existence, energy decay rates and so on) (See [1, 2, 3, 4, 6]). In this work, we
deal with a roller to roller part of the mechanical process. If the roller’s shaft
moves, then the system may have unstable energy around its boundaries. The
energy is the work done WD. We try to check the PDE problem induced by
mathematical modelling for axially moving membrane (in effect, string).

In particular, we focus on the time variable relating to the damping term. It
is related to the energy generated from the boundary inward when the boundary
moves. The energy generated at this time is non-conservative work done WDnc.
In case of the work done defined by the non conservative forces f(x, t) in internal
of domain and fc(t) at the boundary x = l(t). In the free boundary, the axially
moving string may slip. Therefore, it is necessary to define a different time. It
is necessary to express the time differently from normal time t. I will express it
in τ here. An also, work done on the outward direction at the right boundary
that is free is WDrb. Therefore, WD = WDnc + WDrb on the near the right
boundary. Note that work done on the fixed boundary x = 0 is zero [See
FIGURE 1].
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Our work focus on WDnc for the time delay relating s(x, t − τ) effected
weight $(x) and moving speed ν (See [8]). Our purpose in this work derives
a mathematical model with internal time delay. It is meaningful for analyt-
ical approaches of the PDE system concerning the time-varying delay in [1],
physically.

This work is organized into some processes. First, we check some needed
physical variables. Using the variables, we consider the kinetic energy, potential
energy, and work done in great detail. Next, we consider the variation for energy.
Using the energy conservation and the variation lemma, Hamilton’s principle,
integration by parts, and so on, we deduce the initial-boundary problem for
nonlinear PDE, including time delay meaningfully.

Figure 1. WD on the sense of physical situations.

2. Mathematical modelling

The string on the mass production process is steered axially through two
ends, which are spaced apart by a distance of l(t). The membrane has two
variables. s is the displacement of string under the variables. The first variable
is the spatial part x. The range of x is 0 ≤ x ≤ l(t). Indeed, we consider suitable
time t of l(t) is fixed. In case t is free, we can consider it as future work. It is a
part of the mechanical process. More delicately, the part is roller to roller. In
the case of the first boundary x = 0, physically, the roller’s shaft is fixed. In the
other case l(t), the roller’s shaft is mechanically free. The next variable is time
t Over time, the string moves in a high-speed moving axial direction. At this
time, a slip phenomenon occurs in the inner area with the right border l(t). A
variable related to the time that shows this phenomenon well is τ . f, fc and ν
change their symbols to ψ,ψc and v, respectively. Some variables and constants
that will be used in this paper are as follows:
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v > 0 : moving speed for axial direction;
st + vsx : transversal velocity of the string moving;
s : displacement of the string moving;
(·)t = ∂(·)/∂t : the partial derivative for time;
(·)x = ∂(·)/∂x : the partial derivative for time for domain value;
C(x) : the area of cross-section;
$(x) : mass per unit(weight);
Y : Young’s elastic modulus;
σ(x, t) : tensile stress;
ζ(x, t) : strain;
ι0 : initial tension of string.

We also define certain energies and vibrations physically. K is kinetic energy.
P is potential energy. δWDnc is the variation of non-conservative work done.
δWDrb is the variation of work done at the right boundary. More specifically,
all of them are given by

K =
1

2

∫ l(t)

0

$(x)C(x)[v2 + (vsx + st)
2]dx, (1)

P =

∫ l(t)

0

[(
ι0 +

Y C(x)

4

∫ 1

0

(
∂s

∂x

)2

dx

)
+

1

2
C(x)σ(x, t)

]
ζ(x, t)dx, (2)

δWDnc =

∫ l(t)

0

[
ψ(x, t)− $(x)v

2
st(x, t− τ)

]
δs(x, t)dx+ ψc(t)δs(l(t), t),(3)

δWDrb = $(l(t))C(l(t))v(vsx(l(t), t) + st(l(t), t))δs(l(t), t). (4)

Now,we calculate the potential energy P in more detail. Let Z and ζ(x, t) =
dy−dx
dx (,where |dx| = 1) be the string’s tension and the strain under physical

situations, respectively [See FIGURE 2].

Figure 2. Strain on the sense of physical situations.
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Then, we have

P =

∫ l(t)

0

Zζ(x, t)dx

=

∫ l(t)

0

[
σ(ε(x, t)) +

σ′(ε(x, t))

2

∫ l(t)

0

(
∂s

∂x

)2

dx

]
ζ(x, t)dx.

Next we set σ(ε(x, t)) = ι0+ Y C(x)
2 ε(x, t) with ι0. Therefore the potential energy

U changes

P =

∫ l(t)

0

[
ι0 +

Y C(x)

2
ε(x, t) +

Y C(x)

4

∫ l(t)

0

(
∂s

∂x

)2

dx

]
ζ(x, t)dx.

Because of σ(ε(x, t)) which is defined by σ(x, t), we can apply σ(ε(x, t)) =
Y ε(x, t). So, we finally get

P =

∫ l(t)

0

[(
ι0 +

Y C(x)

4

∫ 1

0

(
∂s

∂x

)2

dx

)
+

1

2
C(x)σ(x, t)

]
ζ(x, t)dx.

By the Taylor’s theorem, we have the strain

ζ(x, t) =
dy − dx
dx

=
1

2

(
∂s

∂x

)2

− 1

8

(
∂s

∂x

)4

+ · · ·+
− 1

4 · · ·
(
1
2 − n+ 1

)
n!

(
∂s

∂x

)n
+ · · ·

≈ 1

2

(
∂s

∂x

)2

� 1

So, we approximately get

P =
1

2

∫ l(t)

0

[(
ι0 +

Y C(x)

4

∫ l(t)

0

(
∂s

∂x

)2

dx

)
+

1

2
C(x)σ(x, t)

](
∂s

∂x

)2

dx.

From now on, we start calculating the variation between kinetic and potential
energy. By using the Gâteatux derivative, we get variations of K and P like as:

δK(s;φ) = lim
ε→0

K(s+ εφ)−K(s)

ε

=

∫ l(t)

0

$(x)C(x) [(st + vsx)φt + v(st + vsx)φx] dx,

(5)

δP (s;φ) = lim
ε→0

P (s+ εφ)− P (s)

ε

=

∫ 1

0

[(
ι0 +

Y C(x)

4

∫ l(t)

0

(
∂s

∂x

)2

dx

)
+

1

2
C(x)σ(x, t)

]
sxφxdx,

(6)

where φ is the C1 function which depends on x and t.
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Apply for the Hamilton’s Principle, (3)-(4) and (5)-(6) are as follows:∫ t1

t0

(δK − δP + δWDnc − δWDrb)dt = 0, for all t ∈ [t0, t1] (7)

Accordingly, (7) can be replaced with∫ tl

t0

∫ l(t)

0

$(x)C(x) [(st + vsx)φt + v(st + vsx)φx] dxdt

+

∫ tl

t0

∫ l(t)

0

[
ι0 +

Y C(x)

4

∫ l(t)

0

(
∂s

∂x

)2

dx+
1

2
C(x)σ(x, t)

]
sxφxdxdt

+

∫ tl

t0

∫ l(t)

0

[
ψ(x, t)− $(x)v

2
st(x, t− τ)

]
φdxdt

+

∫ tl

t0

[Fc(t)φ(l(t), t)−$(l(t))C(l(t))v(vsx(l(t), t) + st(l(t), t))φ(l(t), t)] dt = 0

(8)
By using the integration by parts, we deduce∫ t1

t0

[
$(l(t))C(l(t))v(vsx(l(t), t) + st(l(t), t))−

(
ι0 +

Y C(l(t))

4

∫ l(t)

0

(
∂s

∂x

)2

dx

)
sx(l(t), t)

+ Fc(t)−
1

2
C(l(t))σ(l(t), t)sx(l(t), t)−$(l(t))C(l(t))v(vsx(l(t), t) + st(l(t), t))

]
φ(l(t), t)dt

−
∫ t1

t0

[
$(0)C(0)v(vsx(0, t) + st(0, t))−

(
ι0 +

Y C(0)

4

∫ l(t)

0

(
∂s

∂x

)2

dx

)
sx(0, t)

− 1

2
C(0)σ(0, t)sx(0, t)

]
φ(0, t)dt

+

∫ l(t)

0

$(x)C(x)(vsx(x, t1) + st(x, t1))φ(x, t1)dx

+

∫ l(t)

0

$(x)C(x)(vsx(x, t0) + st(x, t0))φ(x, t0)dx

−
∫ t1

t0

∫ l(t)

0

[
stt −

(
ι0

$(x)C(x)
− v2 +

Y

4$(x)

∫ l(t)

0

(
∂s

∂x

)2

dx

)
sxx

+

[(
$x(x)

$(x)
+
Cx(x)

C(x)

)
v2 − Y Cx(x)

4$(x)C(x)

∫ l(t)

0

(
∂s

∂x

)2

dx

]
sx

+

(
$x(x)

$(x)
+
Cx(x)

C(x)

)
vst + 2vsxt

− 1

2$(x)C(x)

∂

∂x

[
C(x)σ(x, t)

∂s

∂x

]
−
[
ψ(x, t)− $(x)v

2
st(x, t− τ)

]]
dxdt = 0.
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Apply for the variational lemma, finally we get the following mathematical
modelling considering internal time delay

stt−

[
1

$(x)C(x)
(ι0 + C(x)σ(x, t))− v2 +

Y

4$(x)

∫ l(t)

0

(
∂s

∂x

)2

dx

]
sxx

+

[(
$x(x)

$(x)
+
Cx(x)

C(x)

)
v2

− 1

2$(x)C(x)

∂

∂x
(C(x)σ(x, t))− Y Cx(x)

4$(x)C(x)

∫ l(t)

0

(
∂s

∂x

)2

dx

]
sx

+

(
$x(x)

$(x)
+
Cx(x)

C(x)

)
vst +

$(x)v

2
st(x, t− τ) + 2vsxt = ψ(x, t)

in (0, l(t))× (0, T ),

(9)

the boundary conditions on (0, T ), as

ψc(t)−

[(
ι0 +

Y C(l(t))

4

∫ l(t)

0

(
∂s

∂x

)2

dx

)
+ C(l(t))σ(l(t), t)

]
× sx(l(t), t) = 0

(10)

sx(0, t) = st(0, t) = 0 (11)

and the initial conditions as

s(x, 0) = s0(x) and st(x, 0) = sl(x) in (0, l(t)). (12)

3. Conclusion

Under the suitable initial condition relating (12), the generalization (consid-
ering coefficient of sxx) for the equation (9) is given a name to the Kirchhoff
based type equation (See [5]). In the boundaries x = l(t) and ψc(t), mathemat-
ically we regard them as Dirichlet boundary, Neumann boundary and so on.
Especially, the boundary relating (10) can be unstable because of WD. So, we
may need consisting to the boundary feedback control −g(ut). we can get the
generalized PDE system which is set K(x, t, ‖∇u(t)‖2) by

1

$(x)C(x)
(ι0 + C(x)σ(x, t))− ν2 +

Y

4$(x)

∫ l(t)

0

(
∂s

∂x

)2

dx,

and the rest of terms
(
except

(
$x(x)
$(x) + Cx(x)

C(x)

)
vst + $(x)ν

2 st(x, t− τ)
)

in (9) to

be the nonlinear function by

N(x, t, sx, sxt),

which is concerned about sx, sxt and ψ(x, t). If
(
$x(x)
$(x) + Cx(x)

C(x)

)
vst+

$(x)ν
2 st(x, t−

τ) is generalized to µ1(x)st + µ2(x)st(x, t− τ), it is meaningful to establish the
relationship between µ1(x) and µ2(x) mathematically.
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