• Title/Summary/Keyword: axial vibration

Search Result 689, Processing Time 0.023 seconds

Verification on Damage Calculating Method of Vibration Fatigue Using Uni-axial Vibration Test (단축가진 시험을 통한 진동내구 손상도 계산)

  • Kim, Chan-Jung;Bae, Chul-Yong;Lee, Bong-Hyun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.5 s.110
    • /
    • pp.521-528
    • /
    • 2006
  • The vibration fatigue is suitable case of fatigue problem that system is exposed to the random or other irregular sources. Even some kinds of effort using power spectral density (PSD) and statistical concept was presented to cope with the intangible force signal, it is still lack of providing a reasonable solution when its exciting frequency is near or beyond of first eigenvalue. In this paper, energy approach method is presented to calculate a vibration induced fatigue damage in frequency domain. Since the corresponding damage become much larger than nominal case when the vibration is coupled with a mode shape of given structure, the new technique compensate the characteristics of structure with a measured frequency response function (FRF) between forcing acceleration and responding stress.

A Mathematical Approach for Vibration Analysis of a Pickup Actuator (수학적 전개에 의한 픽업 액추에이터의 진동 분석)

  • Lee, Kyung Taek
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.11
    • /
    • pp.1128-1136
    • /
    • 2012
  • This paper analyzes the vibration characteristics of an optical pickup actuator, which has six wire-suspensions and is used in optical disc drives(ODDs). The vibration characteristics of the actuator is mathematically described by analyzing its beam configuration and motion condition confined to lateral and longitudinal directions of the beams. The accuracy of the vibration characteristics is proved by comparing mode frequencies with a finite element analysis. Finally, it is shown that mode frequencies and shapes can be modified by changing design parameters in mathematical expressions.

Vibration Analysis of a Multi-Stage Rotating Shaft Shape (다단 회전축계 형상의 진동 연구)

  • Song, OhSeop;Park, Sangyun;Kang, Sunghwan;Seo, Jungseok;Kim, Sunhong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.10a
    • /
    • pp.730-735
    • /
    • 2013
  • This paper contains various vibration analysis of multi-stage shaft shape such as the bending, torsional and axial vibration. The shaft system is modeled as Timoshenko beam with the transverse shear and rotary inertia effect and the equation of motion is derived by Hamilton's principle with considering clamped-free boundary condition. Then, eigenvalue problem of discrete equation of motion for multi-stage shaft model is solved and got results of the natural frequency through the numerical analysis. Obtained numerical analysis results through Matlab program were compared with those of FEM analysis to verify the results. This study suggests that design of shaft system be consider torsional and axial vibration as well as bending vibration.

  • PDF

Vibration analysis of double-walled carbon nanotubes based on Timoshenko beam theory and wave propagation approach

  • Emad Ghandourah;Muzamal Hussain;Amien Khadimallah;Abdulsalam Alhawsawi;Essam Mohammed Banoqitah;Mohamed R. Ali
    • Advances in nano research
    • /
    • v.14 no.6
    • /
    • pp.521-525
    • /
    • 2023
  • This paper concerned with the vibration of double walled carbon nanotubes (CNTs) as continuum model based on Timoshenko-beam theory. The vibration solution obtained from Timoshenko-beam theory provides a better presentation of vibration structure of carbon nanotubes. The natural frequencies of double-walled CNTs against half axial wave mode are investigated. The frequency decreases on decreasing the half axial wave mode. The shape of frequency arcs is different for various lengths. It is observed that model has produced lowest results for C-F and highest for C-C. A large parametric study is performed to see the effect of half axial wave mode on frequencies of CNTs. This numerically vibration solution delivers a benchmark results for other techniques. The comparison of present model is exhibited with previous studies and good agreement is found.

Feasibility Study of Estimating Prestress Force of Grouted Tendons (종진동특성을 이용한 부착식 텐던의 긴장력 추정 타당성 연구)

  • Kim, Byeong Hwa;Jang, Jung Bum;Lee, Hong Pyo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.2A
    • /
    • pp.103-111
    • /
    • 2010
  • A feasibility study for nondestructively estimating prestress force of a grouted tendon using axial vibrations has been investigated. Total eight prestressed concrete beams with different stress levels have been specially designed and constructed for this investigation. The various axial vibration tests have been conducted in order to extract the dynamic characteristics of the prestressed concrete beams. It turns out that the axial frequency, elastic wave velocity and elastic modulus are nonlinearly increased as the prestress force level increases. It seems that the axial vibration characteristics of the existing grouted tendons are a feasible indicator for the identification of their tensile force.

Load-Frequency Relationships of Continuous Compression Members (다 경간 압축재의 하중-진동수 관계)

  • 이수곤;김순철;임동혁
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.04a
    • /
    • pp.335-340
    • /
    • 1998
  • The apparently different physical problems of lateral vibration and elastic stability of a linear member are limiting cases of a single phenomenon, the more general expression being the mode of vibration with end thrust. For a single-span beam-column, it is generally known that the square of the frequency of lateral vibration is approximately linearly related to compressive axial force. In this paper the relationship between the frequency and axial force of multi-span compression members is investigated by means of the finite element method.

  • PDF

Forced vibration of nanorods using nonlocal elasticity

  • Aydogdu, Metin;Arda, Mustafa
    • Advances in nano research
    • /
    • v.4 no.4
    • /
    • pp.265-279
    • /
    • 2016
  • Present study interests with the longitudinal forced vibration of nanorods. The nonlocal elasticity theory of Eringen is used in modeling of nanorods. Uniform, linear and sinusoidal axial loads are considered. Dynamic displacements are obtained for nanorods with different geometrical properties, boundary conditions and nonlocal parameters. The nonlocal effect increases dynamic displacement and frequency when compared with local elasticity theory. Present results can be useful for modeling of the axial nanomotors and nanoelectromechanical systems.

Analysis of Seismic Response of the Buried Pipeline with Pipe End Conditions (I) (단부 경계조건을 고려한 매설관의 동적응답 해석 (I))

  • Jeong, Jin-Ho;Lee, Byong-Gil;Park, Byung-Ho
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.1148-1158
    • /
    • 2005
  • This work reports results of our study on the dynamic responses of the buried pipelines both along the axial and the transverse directions under various boundary end conditions. We have considered three cases, i.e., the free ends, the fixed ends, and the fixed-free ends. We have studied the seismic responses of the buried pipelines with the various boundary end conditions both along the axial and the transverse direction. We have considered three cases, i.e., the free ends, the fixed ends, and the fixed-free ends for the axial direction, and three more cases including the guided ends, the simply supported ends, and the supported-guided ends for the transverse direction. The buried pipelines are modeled as beams on elastic foundation while the seismic waves as a ground displacement in the form of a sinusoidal wave. The natural frequency and its mode, and the effect of parameters have been interpreted in terms of free vibration. The natural frequency varies most significantly by the soil stiffness and the length of the buried pipelines in the case of free vibration, which increases with increasing soil stiffness and decreases with increasing length of the buried pipeline. Such a behavior appears most prominently along the axial rather than the transverse direction of the buried pipelines. The resulting frequencies and the mode shapes obtained from the free vibration for the various boundary end conditions of the pipelines have been utilized to derive the mathematical formulae for the displacements and the strains along the axial direction, and the displacements and the bending strains along the transverse direction in case of the forced vibration. The negligibly small difference of 6.2% between our result and that of Ogawa et. al. (2001) for the axial strain with a one second period confirms the accuracy of our approach in this study.

  • PDF

Vibration and Stability of Non-uniform Tapered Beams resting on a Two-Layered Elastic Foundation (2층 탄성기초위에 놓인 불균일 테이퍼진 보의 진동과 안정성)

  • 류봉조;임경빈;이종원;한재섭
    • Journal of KSNVE
    • /
    • v.9 no.4
    • /
    • pp.828-834
    • /
    • 1999
  • The paper describes the vibration and the stability of nonuniform tapered beams resting on two-layered elastic foundations. The two-layered elastic foundations are constructed by discributed Winkler springs and shearing layers as ofen used in oil models. Governing equations are derived from energy experssions using Hamilton's Principle. The associated eigenvalue problems are solved to obtain the free vibration frequencies or the buckling loads. Numerical results for the vibration and the stability of beams under an axial force are presented and compared with other available solutions. Finally, vibration frequencies and critical forces are investigated for various thickness ratios, shear foundation parameters, Winkler foundation parameters, and boundary conditions of tapered beams.

  • PDF

Vibration Analysis of Rotor Systems Using Finite Dynamic Elements (동적 유한요소에 의한 회전축 계의 진동 해석)

  • 양보석;황형섭
    • Journal of KSNVE
    • /
    • v.7 no.3
    • /
    • pp.467-475
    • /
    • 1997
  • A rotor-bearing system has been investigated, including internal damping and axial torque using finite dynamic elements. A procedure is presented for dynamic modeling of rotor-bearing system which consist of finite dynamic shaft elements, rigid disk, and bearing and seal. A finite dynamic element model including the effects of rotatory inertia, gyroscopic moments, axial force, and axial torque is developed using the frequency dependent shape function. The natural whirl speeds, stability, and unbalance response of rotor system are calculated on several cases and compared with the conventional finite elements.

  • PDF