• 제목/요약/키워드: axial uniformity

검색결과 55건 처리시간 0.027초

풍동장치 내 공기 유동장과 속도 균일도 특성에 대한 분석 (A Study on the Characteristics of Air flow Fields with Velocity Uniformity in a Wind Tunnel)

  • 한석종;이상호;이재규
    • 한국가시화정보학회지
    • /
    • 제16권3호
    • /
    • pp.59-64
    • /
    • 2018
  • Numerical simulations were carried out to analyze the flow characteristics of the wind tunnel. Flow field characteristics with velocity uniformity at the test sections are largely affected by inlet conditions of air flow rate and temperature. Axial average velocity of the flow field inside the test area was almost linearly decreased by 0.026% each 1m. The uniformity distributions of axial velocity showed the highest reduction rate of about 24% between nozzle outlets 1 ~ 2m. In addition, average velocity and the uniformity are increased with air temperature in the wind tunnel due to density variation. The results of this paper are expected to be useful for the basic design of wind tunnel and to be used for efficient design.

ACR 팬텀을 이용한 Cartesian Trajectory와 MultiVane Trajectory의 비교분석 : 영상강도 균질성과 저대조도 검체 검출률 test를 사용하여 (Comparative Analysis of Cartesian Trajectory and MultiVane Trajectory Using ACR Phantom in MRI : Using Image Intensity Uniformity Test and Low-contrast Object Detectability Test)

  • 남순권;최준호
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제42권1호
    • /
    • pp.39-46
    • /
    • 2019
  • This study conducted a comparative analysis of differences between cartesian trajectory in a linear rectangular coordinate system and MultiVane trajectory in a nonlinear rectangular coordinate system axial T1 and axial T2 images using an American College of Radiology(ACR) phantom. The phantom was placed at the center of the head coil and the top-to-bottom and left-to-right levels were adjusted by using a level. The experiment was performed according to the Phantom Test Guidance provided by the ACR, and sagittal localizer images were obtained. As shown in Figure 2, slices # 1 and # 11 were scanned after placing them at the center of a $45^{\circ}$ wedge shape, and a total of 11 slices were obtained. According to the evaluation results, the image intensity uniformity(IIU) was 93.34% for the cartesian trajectory, and 93.19% for the MultiVane trajectory, both of which fall under the normal range in the axial T1 image. The IIU for the cartesian trajectory was 0.15% higher than that for the MultiVane trajectory. In axial T2, the IIU was 96.44% for the cartesian trajectory, and 95.97% for the MultiVane trajectory, which fall under the normal range. The IIU for the cartesian trajectory was by 0.47% higher than that for the MultiVane trajectory. As a result, the cartesian technique was superior to the MultiVane technique in terms of the high-contrast spatial resolution, image intensity uniformity, and low-contrast object detectability.

CFD를 활용한 DOC-DPF 조합의 유동 균질도 분석 (Flow Uniformity Analysis of DOC-DPF System using CFD)

  • 김태훈;박성욱
    • 한국분무공학회지
    • /
    • 제24권3호
    • /
    • pp.122-129
    • /
    • 2019
  • Flow uniformity in aftertreatment system is an important factor in determining uniform catalytic reaction and filtration. In this study, variety types of DOC-DPF system design were analyzed to increase flow uniformity. For this analysis, ANSYS Fluent was used with porous media setup for DOC and DPF. Turbulent flow was modeled by standard $k-{\varepsilon}$ model excepting porous media. Uniformity index was utilized to evaluate the flow uniformity quantitatively. Reference design showed low velocity region because two large vortex were generated before baffle. When radius of DOC-DPF system was increased, exhaust pressure acting on the inlet decreases and velocity distribution was shifted to one side. When inlet pipe was set to axial center of DOC-DPF system velocity distribution was symmetric. However, flow was not dissipated until the front end of DOC and showed higher uniformity index. When the volume of DOC was reduced while fixed volume of entire DOC-DPF system and baffle plate is located downstream of the DOC-DPF system, there was improvement in uniformity index.

파일럿규모 슬러리 기포탑에서 기포체류량의 축방향, 반경방향 분포 (Axial and Radial Distributions of Bubble Holdup in a Slurry Bubble Column with Pilot Plant Scale)

  • 임대호;장지화;강용;전기원
    • Korean Chemical Engineering Research
    • /
    • 제49권2호
    • /
    • pp.200-205
    • /
    • 2011
  • 직경 1.0 m인 파일럿 규모 슬러리 기포탑에서 기포체류량의 축방향, 반경방향분포를 고찰하였다. 기체의 유속, 연속 액상의 표면장력 그리고 슬러리상에 포함된 고체입자의 분율이 기포탑 내부 기포의 축방향 및 반경방향 분포에 미치는 영향을 검토하였다. 본 연구의 실험조건 모두에서 체류량은 기포탑의 중심으로부터 반경방향 무차원 거리가 증가함에 따라 감소하였으며, 기포탑의 분산판으로부터 축방향의 무차원의 거리가 증가함에 따라 증가하였다. 기포체류량의 반경방향 불균일도는 기체의 유속이 증가함에 따라 연속 액상의 표면장력이 감소함에 따라 증가하였으나 슬러리상에 포함된 고체입자 분율에는 크게 영향을 받지 않았다. 본 연구의 범위에서 축방향과 반경방향 기포체류량의 분포는 각각의 실험변수의 상관식으로 나타낼 수 있었다.

자장의 배열 및 형태가 유도결합형 플라즈마에 미치는 효과에 관한 연구 (A study on the effects of variously configured magnets on the characteristics of inductively coupled plasma)

  • 황순원;이영준;유지범;이재찬;염근영
    • 한국표면공학회지
    • /
    • 제32권4호
    • /
    • pp.513-520
    • /
    • 1999
  • In this study, we investigated the effects of variously configured magnets on the characteristics of the plasmas to enhance plasma uniformity and density of an inductively coupled plasma source. As the magnets, Helmholtz type axial electromagnets and various multi-dipole magnets types around the chamber wall were used. To characterize the plasma as a function of the combination of the magnets and magnetic field strengths, ion density, electron temperature, and plasma potential were measured using an electrostatic probe along the chamber diameter for Ar plasmas. The measured maximum ion densities were $8$\times$10^{ 11}$$cm^{-3}$ with 600W inductive power and at 5mTorr of operational pressure and the uniformity of ion density was less than 5.9% at 2mTorr of operational pressure. The combination of an optimized multi-dipole magnet type and an axial electromagnet showed the lowest electron temperature (3eV) and plasma potential ($34V{p}$ )

  • PDF

동축공기에 따른 Mild 연소의 열적 특성에 대한 수치연구 (Numerical Investigation on the Thermal Characteristics of Mild Combustion According to Co-axial Air)

  • 황창환;백승욱;김학영
    • 한국연소학회지
    • /
    • 제15권4호
    • /
    • pp.1-8
    • /
    • 2010
  • Mild combustion is considered as a promising combustion technology for energy saving and low emission of combustion product gases. In this paper, the controllability of reaction region in mild combustion is examined by using co-axial air nozzle. For this purpose, numerical approach is carried out. Propane is considered for fuel and air is considered for oxidizer and the temperature of air is assumed 900K slightly higher than auto ignition temperature of propane. But unlike main air, the atmospheric condition of co-axial air is considered. Various cases are conducted to verify the characteristics of Co-Axial air burner configuration. The use of coaxial air can affect reaction region. These modification help the mixing between fuel and oxidizer. Then, reaction region is reduced compare to normal burner configuration. The enhancement of main air momentum also affects on temperature uniformity and reaction region. The eddy dissipation concept turbulence/chemistry interaction model is used with two step of global chemical reaction model.

축방향 자기장의 주기적 단속을 이용한 유도결합형 플라즈마 식각장비의 고품위 플라즈마 형성 (The generation of Uniform High Density Plasma of Inductively Coupled Plasma Etcher Enhanced by Alternating Axial Magnetic Field)

  • 정재성;김철식
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 1998년도 추계종합학술대회 논문집
    • /
    • pp.589-592
    • /
    • 1998
  • The performance of inductively coupled plasma (ICP) is enhanced by axial magnetic field driven by alternating current Helmholtz coils in this work. Langmuir pobe is used to characterize the plasma, and the etching performance is demonstrated with phororesist stripping process. It is shown that its density and uniformity depends on the frequency of driving current to the magnetic field.

  • PDF

Effects of 3D contraction on pebble flow uniformity and stagnation in pebble beds

  • Wu, Mengqi;Gui, Nan;Yang, Xingtuan;Tu, Jiyuan;Jiang, Shengyao
    • Nuclear Engineering and Technology
    • /
    • 제53권5호
    • /
    • pp.1416-1428
    • /
    • 2021
  • Pebble flow characteristics can be significantly affected by the configuration of pebble bed, especially for HTGR pebble beds. How to achieve a desired uniform flow pattern without stagnation is the top priority for reactor design. Pebbles flows inside some specially designed pebble bed with arc-shaped contraction configurations at the bottom, including both concave-inward and convex-outward shapes are explored based on discrete element method. Flow characteristics including pebble retention, residence-time frequency density, flow uniformity as well as axial velocity are investigated. The results show that the traditionally designed pebble bed with cone-shape bottom is not the most preferred structure with respect to flow pattern for reactor design. By improving the contraction configuration, the flow performance can be significantly enhanced. The flow in the convex-shape configuration featured by uniformity, consistency and less stagnation, is much more desirable for pebble bed design. In contrast, when the shape is from convex-forward to concave-inward, the flow shows more nonuniformity and stagnation in the corner although the average cross-section axial velocity is the largest due to the dominant middle pebbles.

쵸크랄스키 실리콘 단결정의 특성에 미치는 아르곤 유동의 영향 (Effect of argon flow on the quality of Czochralski silicon crystal)

  • 김정민;이홍우;최준영;유학도
    • 한국결정성장학회지
    • /
    • 제10권2호
    • /
    • pp.91-95
    • /
    • 2000
  • 8인치 쵸크랄스키 실리콘 단결성 성장에 있어서, 계면에서의 온도기울기, 산소, 농도 및, 반경방향의 산소농도 분포에 미치는 아르곤 가스 유동의 영향을 조사하였다. 아르곤의 유입량을 증가시킴에 따라 계면 근처 결정내 온도기울기가 증가하였으며. 결정내 산소농도는 감소하였다. 한편, 반경방향의 산소농도 균일성은 악화됨이 관찰되었다. 실험 결과를 종합하여 볼 때, 아르곤 유동이 산소 농도 및 균일 분포성 등의 결정 특성에 중요한 영향을 미치는 성장 공정변수임을 확인할 수 있었다.

  • PDF

The Effects of the Capsule Density Uniformity on the Behavior of Cylindrical Capsules Transported through a Pipiline

  • Rhee, Kyoung-Hoon
    • Korean Journal of Hydrosciences
    • /
    • 제5권
    • /
    • pp.115-124
    • /
    • 1994
  • This paper presents the results of a study conducted to improve the understanding of the characteristics of cylindrical capsule flow in a pipeline by taking into account of the effect of capsule density uniformity. The effect fo capsule density variation in the axial direction was studied both experimentally and analytically. The experiments were conducted in a 190mm diameter straight pipe 17m long. The velocity, gap and tilt of capsules were measured under various conditions. In order to interpret the data on various capsule density conditions, the stability index given in the dimensionless number was introduced. The motion of capsules in pipelines is strongly affected by the stability of the capsules characterized by the statility index. The experiments conducted proved that the stability index is a vaild criterion for explaining and correlating data on the capsule motion and the capsule denisity uniformity.

  • PDF