• Title/Summary/Keyword: axial uniformity

Search Result 55, Processing Time 0.026 seconds

A Study on the Characteristics of Air flow Fields with Velocity Uniformity in a Wind Tunnel (풍동장치 내 공기 유동장과 속도 균일도 특성에 대한 분석)

  • Han, Seok Jong;Lee, Sang Ho;Lee, Jae Gyu
    • Journal of the Korean Society of Visualization
    • /
    • v.16 no.3
    • /
    • pp.59-64
    • /
    • 2018
  • Numerical simulations were carried out to analyze the flow characteristics of the wind tunnel. Flow field characteristics with velocity uniformity at the test sections are largely affected by inlet conditions of air flow rate and temperature. Axial average velocity of the flow field inside the test area was almost linearly decreased by 0.026% each 1m. The uniformity distributions of axial velocity showed the highest reduction rate of about 24% between nozzle outlets 1 ~ 2m. In addition, average velocity and the uniformity are increased with air temperature in the wind tunnel due to density variation. The results of this paper are expected to be useful for the basic design of wind tunnel and to be used for efficient design.

Comparative Analysis of Cartesian Trajectory and MultiVane Trajectory Using ACR Phantom in MRI : Using Image Intensity Uniformity Test and Low-contrast Object Detectability Test (ACR 팬텀을 이용한 Cartesian Trajectory와 MultiVane Trajectory의 비교분석 : 영상강도 균질성과 저대조도 검체 검출률 test를 사용하여)

  • Nam, Soon-Kwon;Choi, Joon-Ho
    • Journal of radiological science and technology
    • /
    • v.42 no.1
    • /
    • pp.39-46
    • /
    • 2019
  • This study conducted a comparative analysis of differences between cartesian trajectory in a linear rectangular coordinate system and MultiVane trajectory in a nonlinear rectangular coordinate system axial T1 and axial T2 images using an American College of Radiology(ACR) phantom. The phantom was placed at the center of the head coil and the top-to-bottom and left-to-right levels were adjusted by using a level. The experiment was performed according to the Phantom Test Guidance provided by the ACR, and sagittal localizer images were obtained. As shown in Figure 2, slices # 1 and # 11 were scanned after placing them at the center of a $45^{\circ}$ wedge shape, and a total of 11 slices were obtained. According to the evaluation results, the image intensity uniformity(IIU) was 93.34% for the cartesian trajectory, and 93.19% for the MultiVane trajectory, both of which fall under the normal range in the axial T1 image. The IIU for the cartesian trajectory was 0.15% higher than that for the MultiVane trajectory. In axial T2, the IIU was 96.44% for the cartesian trajectory, and 95.97% for the MultiVane trajectory, which fall under the normal range. The IIU for the cartesian trajectory was by 0.47% higher than that for the MultiVane trajectory. As a result, the cartesian technique was superior to the MultiVane technique in terms of the high-contrast spatial resolution, image intensity uniformity, and low-contrast object detectability.

Flow Uniformity Analysis of DOC-DPF System using CFD (CFD를 활용한 DOC-DPF 조합의 유동 균질도 분석)

  • Kim, Taehoon;Park, Sungwook
    • Journal of ILASS-Korea
    • /
    • v.24 no.3
    • /
    • pp.122-129
    • /
    • 2019
  • Flow uniformity in aftertreatment system is an important factor in determining uniform catalytic reaction and filtration. In this study, variety types of DOC-DPF system design were analyzed to increase flow uniformity. For this analysis, ANSYS Fluent was used with porous media setup for DOC and DPF. Turbulent flow was modeled by standard $k-{\varepsilon}$ model excepting porous media. Uniformity index was utilized to evaluate the flow uniformity quantitatively. Reference design showed low velocity region because two large vortex were generated before baffle. When radius of DOC-DPF system was increased, exhaust pressure acting on the inlet decreases and velocity distribution was shifted to one side. When inlet pipe was set to axial center of DOC-DPF system velocity distribution was symmetric. However, flow was not dissipated until the front end of DOC and showed higher uniformity index. When the volume of DOC was reduced while fixed volume of entire DOC-DPF system and baffle plate is located downstream of the DOC-DPF system, there was improvement in uniformity index.

Axial and Radial Distributions of Bubble Holdup in a Slurry Bubble Column with Pilot Plant Scale (파일럿규모 슬러리 기포탑에서 기포체류량의 축방향, 반경방향 분포)

  • Lim, Dae-Ho;Jang, Ji-Hwa;Kang, Yong;Jun, Ki-Won
    • Korean Chemical Engineering Research
    • /
    • v.49 no.2
    • /
    • pp.200-205
    • /
    • 2011
  • Axial and radial distributions of bubble holdup were investigated in a slurry bubble column with pilot plant scale(D=1.0 m). Effects of gas velocity, surface tension of continuous liquid medium and solid fraction in the slurry phase on the axial and radial distributions of bubble holdup were examined. The bubble holdup decreased with increasing radial dimensionless distance from the center of the column, while it increased with increasing dimensionless distance in the axial direction from the distributor, in all the cases studied. The radial non-uniformity of bubble holdup increased with increasing gas velocity but decreasing surface tension of liquid medium, while it was not dependent upon the solid fraction in the slurry phase. The axial non-uniformity of bubble holdup increased with increasing gas velocity, but it does not change considerably with variations of liquid surface tension or solid fraction in the slurry phase . The axial and radial distributions of bubble holdup were well correlated in terms of operating variables within this experimental conditions.

A study on the effects of variously configured magnets on the characteristics of inductively coupled plasma (자장의 배열 및 형태가 유도결합형 플라즈마에 미치는 효과에 관한 연구)

  • 황순원;이영준;유지범;이재찬;염근영
    • Journal of the Korean institute of surface engineering
    • /
    • v.32 no.4
    • /
    • pp.513-520
    • /
    • 1999
  • In this study, we investigated the effects of variously configured magnets on the characteristics of the plasmas to enhance plasma uniformity and density of an inductively coupled plasma source. As the magnets, Helmholtz type axial electromagnets and various multi-dipole magnets types around the chamber wall were used. To characterize the plasma as a function of the combination of the magnets and magnetic field strengths, ion density, electron temperature, and plasma potential were measured using an electrostatic probe along the chamber diameter for Ar plasmas. The measured maximum ion densities were $8$\times$10^{ 11}$$cm^{-3}$ with 600W inductive power and at 5mTorr of operational pressure and the uniformity of ion density was less than 5.9% at 2mTorr of operational pressure. The combination of an optimized multi-dipole magnet type and an axial electromagnet showed the lowest electron temperature (3eV) and plasma potential ($34V{p}$ )

  • PDF

Numerical Investigation on the Thermal Characteristics of Mild Combustion According to Co-axial Air (동축공기에 따른 Mild 연소의 열적 특성에 대한 수치연구)

  • Hwang, Chang-Hwan;Baek, Seung-Wook;Kim, Hak-Young
    • Journal of the Korean Society of Combustion
    • /
    • v.15 no.4
    • /
    • pp.1-8
    • /
    • 2010
  • Mild combustion is considered as a promising combustion technology for energy saving and low emission of combustion product gases. In this paper, the controllability of reaction region in mild combustion is examined by using co-axial air nozzle. For this purpose, numerical approach is carried out. Propane is considered for fuel and air is considered for oxidizer and the temperature of air is assumed 900K slightly higher than auto ignition temperature of propane. But unlike main air, the atmospheric condition of co-axial air is considered. Various cases are conducted to verify the characteristics of Co-Axial air burner configuration. The use of coaxial air can affect reaction region. These modification help the mixing between fuel and oxidizer. Then, reaction region is reduced compare to normal burner configuration. The enhancement of main air momentum also affects on temperature uniformity and reaction region. The eddy dissipation concept turbulence/chemistry interaction model is used with two step of global chemical reaction model.

The generation of Uniform High Density Plasma of Inductively Coupled Plasma Etcher Enhanced by Alternating Axial Magnetic Field (축방향 자기장의 주기적 단속을 이용한 유도결합형 플라즈마 식각장비의 고품위 플라즈마 형성)

  • 정재성;김철식
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.589-592
    • /
    • 1998
  • The performance of inductively coupled plasma (ICP) is enhanced by axial magnetic field driven by alternating current Helmholtz coils in this work. Langmuir pobe is used to characterize the plasma, and the etching performance is demonstrated with phororesist stripping process. It is shown that its density and uniformity depends on the frequency of driving current to the magnetic field.

  • PDF

Effects of 3D contraction on pebble flow uniformity and stagnation in pebble beds

  • Wu, Mengqi;Gui, Nan;Yang, Xingtuan;Tu, Jiyuan;Jiang, Shengyao
    • Nuclear Engineering and Technology
    • /
    • v.53 no.5
    • /
    • pp.1416-1428
    • /
    • 2021
  • Pebble flow characteristics can be significantly affected by the configuration of pebble bed, especially for HTGR pebble beds. How to achieve a desired uniform flow pattern without stagnation is the top priority for reactor design. Pebbles flows inside some specially designed pebble bed with arc-shaped contraction configurations at the bottom, including both concave-inward and convex-outward shapes are explored based on discrete element method. Flow characteristics including pebble retention, residence-time frequency density, flow uniformity as well as axial velocity are investigated. The results show that the traditionally designed pebble bed with cone-shape bottom is not the most preferred structure with respect to flow pattern for reactor design. By improving the contraction configuration, the flow performance can be significantly enhanced. The flow in the convex-shape configuration featured by uniformity, consistency and less stagnation, is much more desirable for pebble bed design. In contrast, when the shape is from convex-forward to concave-inward, the flow shows more nonuniformity and stagnation in the corner although the average cross-section axial velocity is the largest due to the dominant middle pebbles.

Effect of argon flow on the quality of Czochralski silicon crystal (쵸크랄스키 실리콘 단결정의 특성에 미치는 아르곤 유동의 영향)

  • 김정민;이홍우;최준영;유학도
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.10 no.2
    • /
    • pp.91-95
    • /
    • 2000
  • The effects of argon gas flow on the axial temperature gradient near the interface, the oxygen concentration, and the radial oxygen uniformity was investigated for 8-inch CZ silicon growth. As argon flow rate was increased, the temperature gradient was increased in the crystal near the crystavmelt interface and the oxygen content in the crystal was decreased. But the radial oxygen uniformity was deteriorated. It was found that argon flow is one of the important growing parameters to affect the quality of crystals such as oxygen content and uniformity.

  • PDF

The Effects of the Capsule Density Uniformity on the Behavior of Cylindrical Capsules Transported through a Pipiline

  • Rhee, Kyoung-Hoon
    • Korean Journal of Hydrosciences
    • /
    • v.5
    • /
    • pp.115-124
    • /
    • 1994
  • This paper presents the results of a study conducted to improve the understanding of the characteristics of cylindrical capsule flow in a pipeline by taking into account of the effect of capsule density uniformity. The effect fo capsule density variation in the axial direction was studied both experimentally and analytically. The experiments were conducted in a 190mm diameter straight pipe 17m long. The velocity, gap and tilt of capsules were measured under various conditions. In order to interpret the data on various capsule density conditions, the stability index given in the dimensionless number was introduced. The motion of capsules in pipelines is strongly affected by the stability of the capsules characterized by the statility index. The experiments conducted proved that the stability index is a vaild criterion for explaining and correlating data on the capsule motion and the capsule denisity uniformity.

  • PDF