• Title/Summary/Keyword: axial behavior

Search Result 1,557, Processing Time 0.029 seconds

3-D Finite Element Model for Predicting Bending and Shear Failure of RC Beams (철근콘크리트 보의 휨 및 전단파괴 예측의 3차원 유한요소 모델)

  • Cho, Chang-Geun;Ha, Gee-Joo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.6
    • /
    • pp.109-116
    • /
    • 2010
  • Three-dimensional finite element model for analysis of reinforced concrete members was developed in order to investigate the prediction of bending and shear failure of reinforced concrete beams. A failure surface of concrete in strain space was newly proposed in order to predict accurately the ductile response of concrete under multi-axial confining stresses. Cracking of concrete in triaxial state was incorporated with considering the tensile strain-softening behavior of cracked concrete as well as the cracked shear behavior on cracked surface of concrete caused by aggregate interlocking and, dowel action. By correlation study on failure types of bending and shear of beams, current finite element model was well simulated not only the type of ductile bending failure of under-reinforced beams but also the type of brittle shear failure of no-stirruped reinforced concrete beam.

Dynamic Behavior of Offshore Waste Landfill Revetment with Geosynthethic-Soil Interface (토목섬유 접촉면을 포함한 해상 폐기물처분장 호안구조물의 동적 거동)

  • Kwak, Chang Won;Oh, Myoung Hak;Park, Inn Joon;Jang, Dong In
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.12
    • /
    • pp.141-150
    • /
    • 2017
  • Geosynthetics are generally utilized to restrain the leakage of leachate and other contaminants during the construction of offshore waste landfill. Therefore, geosynthetic-soil interface is formed inevitably. In this study, 2 dimensional numerical analysis is performed to assess the dynamic behaviour of the offshore waste landfill including geosynthetic-soil interface. Offshore waste landfill can be divided into rubble mound revetment and retaining wall types and analyzed on each type. Effective stress analysis is conducted to consider the variation of pore water pressure and axial force and shear displacement of the interface are compared based on the characteristics of seismic frequency. Consequently, retaining wall type demonstrates more stable behavior against liquefaction potential and favorable forces and shear displacement.

Evaluation of Performance Simulation for Bridge Substructure Due to Types of Scour (지반세굴 유형에 따른 교량 하부구조의 해석적 거동 예측)

  • Jung, Wooyoung;Yune, Chanyoung;Lee, Ilhwa
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.3
    • /
    • pp.5-11
    • /
    • 2013
  • The primary objective of this research is to evaluate the behavior of a bridge substructure subjected to scouring during flood. A finite element (FE) study was carried out on a substructure modeled using the standard section specified for highway bridges. The three-dimensional FE model consists of non-linear springs with tri-axial load capacities at the base in order to consider the loss of bearing capacity of the substructure by local scour phenomenon. Various time varying loading conditions and scouring patterns were considered in the analysis. The results indicate a change in the structural behavior of substructure depending on the eroded area and pattern. The outcome of this research will be useful to suggest basic design guidelines for ground sills of the bridge substructure.

Pullout Behavior Characteristics of Enlarged Cylinder Type Anchor Using Numerical Analysis (수치해석을 이용한 확공형 앵커의 인발거동 특성)

  • Moon, Joon-Shik;Lee, Min-Joo
    • Journal of the Korean Geosynthetics Society
    • /
    • v.16 no.4
    • /
    • pp.113-118
    • /
    • 2017
  • Numerical analysis was carried out using a finite element analysis program to analyze the behavior characteristics of enlarged cylinder type anchor. It was found that the ultimate resistance of enlarged cylinder type anchor increases with the enlargement angle from numerical analysis for various enlargement angle cases. In the case of $30-60^{\circ}$ of enlargement angle, the deformation and stress distribution characteristics in anchor are similar regardless of enlargement angle. However, when the same tensile force is applied, there is a difference in the degree of frictional resistance because of difference of displacement of top of grouting zone. Also, it was found that the maximum compressive force and tensile force were generated at the cone of the upper portion of the grouting zone, and tensile fracture of the upper grouting portion is likely to occur.

Flexural Behavior of Reinforced Concrete Columns Using Electric Arc Furnace Oxidizing Slag Aggregates (전기로 산화슬래그 골재를 사용한 철근콘크리트 기둥의 휨 거동)

  • Jung, You-Jin;Lee, Young-Hyun;Kim, Sang-Woo;Kim, Kil-Hee
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.3
    • /
    • pp.267-273
    • /
    • 2012
  • This study is performed to evaluate the flexural performance of reinforced concrete columns with electric arc furnace oxidizing slag aggregates. Electric arc furnace slag is a by-product obtained from the process of refining scrap steel. The electric arc furnace slag can be used as a concrete aggregate, because it mainly consists of CaO and $SiO_2$, similar to natural rocks and minerals. Three rectangular columns with various types of aggregate were cast to test in flexure. All of the test specimens had a cross-section of $250{\times}250$mm and a height of 1,500 mm in test region. The specimens were designed to apply reversed cyclic antisymmetric moment and constant axial force. The experimental results showed that the specimens with electronic arc furnace oxidizing slag aggregates had superior flexural performance than the specimen with natural aggregates.

An Experimental Study on the Flexural Behavior of Reinforced Concrete Columns Strengthened with Wire Rope and T-Shape Steel Plate units (와이어로프와 T형 플레이트에 의해 보강된 RC 기둥의 휨 거동에 대한 실험적 연구)

  • Sim, Jae-Il;Yang, Keun-Hyeok;Oh, Sung-Jin;Byun, Hang-Yong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.153-156
    • /
    • 2008
  • The objective of the present study is to evaluate the flexural behavior of reinforced concrete columns externally strengthened with wire rope and T-shape steel plate units. Three strengened columns and a control unstrengthened column were tested under cyclic lateral load simultaneously subjected to a constant axial load. All columns had same section size, and the arrangement of longitudinal reinforcement and internal hoop. The spacing of wire rope range from 40 ${\sim}$ 80mm, which corresponds from 1.0 ${\sim}$ 0.5, respectively, times the minium amount of hoop specified in seismic design of ACI 318-05. Test results showed that the proposed unbonded-type strengthening procedure is very effective for improving the flexural ductility of reinforced concrete columns.

  • PDF

Uniaxial Behavior of Reinforced Concrete Column with Recycled Fine Aggregate (순환잔골재를 치환한 철근콘크리트 기둥의 압축거동 특성)

  • Jang, Gwang-Soo;Kim, Yun-Su;Yun, Hyun-Do;Choi, Ki-Sun;You, Young-Chan;Kim, Keung-Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.5-8
    • /
    • 2008
  • The use of recycled aggregates is increasing due to problems of lack of natural aggregates. But there are no appropriate design recommendations and basic data for structural members using recycled fine aggregate concrete. This paper is to evaluate compression behavior of reinforced concrete column with displacement level of recycled fine aggregate. For these purpose, four recycled fine aggregate replacement levels (0%, 30%, 60%, 100%) were considered in this paper. Four columns with 400mm${\times}$400mm in cross section are tested under axial load. Experimental results were compared using current code(KCI2007). Compressive strength of reinforced concrete columns with recycled fine aggregate showed higher than that provided in KCI 2007. The KCI provision were conservative and subsequently can be used for design of reinforced recycled fine aggregate concrete column.

  • PDF

Anisotropic Behavior of Compacted Decomposed Granite Soils (다짐 화강풍화토의 비등방성 거동특성)

  • Ham Tae-Gew;Hyodo Masayuki;Ahn Tae-Bong
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.7
    • /
    • pp.5-12
    • /
    • 2005
  • In order to investigate the strength and deformation anisotropy of compacted decomposed granite soils, a series of unsaturated-drained triaxial compression tests were performed. The sample used in the study was decomposed granite soil from Shimonoseki in Yamaguchi prefecture. The sample had three different angles of the axial (major principal) direction to the sedimentation plane (compaction plane), 0, 45 and 90 degrees. The compression strain of specimens subjected to isotropic compression was strongly influenced by the sedimentation angle. In addition, the time dependence was independent of the sedimentation angle in relation to the deformation behavior during the secondary compression process. The effect of the sedimentation angle on the triaxial compression strength and deformation was clear with low confining stress. Moreover, it was recognized that although the sedimentation angle and preparation methods were different, the dilatancy rate was relative to the increment of strength due to dilatancy. Therefore, it may be concluded that the compacted specimen has anisotropic mechanical properties similar to those of sand with initial fabric anisotropy.

Interaction and mechanical effect of materials interface of contact zone composite samples: Uniaxial compression experimental and numerical studies

  • Wang, Weiqi;Ye, Yicheng;Wang, Qihu;Luo, Binyu;Wang, Jie;Liu, Yang
    • Geomechanics and Engineering
    • /
    • v.21 no.6
    • /
    • pp.571-582
    • /
    • 2020
  • Aiming at the mechanical and structural characteristics of the contact zone composite rock, the uniaxial compression tests and numerical studies were carried out. The interaction forms and formation mechanisms at the contact interfaces of different materials were analyzed to reveal the effect of interaction on the mechanical behavior of composite samples. The research demonstrated that there are three types of interactions between the two materials at the contact interface: constraint parallel to the interface, squeezing perpendicular to the interface, and shear stress on the interface. The interaction is mainly affected by the differences in Poisson's ratio and elastic modulus of the two materials, stronger interface adhesion, and larger interface inclination. The interaction weakens the strength and stiffness of the composite sample, and the magnitude of weakening is positively correlated with the degree of difference in the mechanical properties of the materials. The tensile-shear stress derived from the interaction results in the axial tensile fracture perpendicular to the interface and the interfacial shear facture. Tensile cracks in stronger material will propagation into the weaker material through the bonded interface. The larger inclination angle of the interface enhances the effect of composite tensile/shear failure on the overall sample.

Cyclic tests on RC joints retrofitted with pre-stressed steel strips and bonded steel plates

  • Yu, Yunlong;Yang, Yong;Xue, Yicong;Wang, Niannian;Liu, Yaping
    • Structural Engineering and Mechanics
    • /
    • v.75 no.6
    • /
    • pp.675-684
    • /
    • 2020
  • An innovative retrofit method using pre-stressed steel strips and externally-bonded steel plates was presented in this paper. With the aim of exploring the seismic performance of the retrofitted RC interior joints, four 1/2-scale retrofitted joint specimens together with one control specimen were designed and subjected to constant axial compression and cyclic loading, with the main test parameters being the volume of steel strips and the existence of externally-bonded steel plates. The damage mechanism, force-displacement hysteretic response, force-displacement envelop curve, energy dissipation and displacement ductility ratio were analyzed to investigate the cyclic behavior of the retrofitted joints. The test results indicated that all the test specimens suffered a typical shear failure at the joint core, and the application of externally-bonded steel plates and that of pre-stressed steel strips could effectively increase the lateral capacity and deformability of the deficient RC interior joints, respectively. The best cyclic behavior could be found in the deficient RC interior joint retrofitted using both externally-bonded steel plates and pre-stressed steel strips due to the increased lateral capacity, displacement ductility and energy dissipation. Finally, based on the test results and the softened strut and tie model, a theoretical model for determining the shear capacity of the retrofitted specimens was proposed and validated.