DOI QR코드

DOI QR Code

3-D Finite Element Model for Predicting Bending and Shear Failure of RC Beams

철근콘크리트 보의 휨 및 전단파괴 예측의 3차원 유한요소 모델

  • Received : 2010.06.29
  • Accepted : 2010.07.21
  • Published : 2010.11.30

Abstract

Three-dimensional finite element model for analysis of reinforced concrete members was developed in order to investigate the prediction of bending and shear failure of reinforced concrete beams. A failure surface of concrete in strain space was newly proposed in order to predict accurately the ductile response of concrete under multi-axial confining stresses. Cracking of concrete in triaxial state was incorporated with considering the tensile strain-softening behavior of cracked concrete as well as the cracked shear behavior on cracked surface of concrete caused by aggregate interlocking and, dowel action. By correlation study on failure types of bending and shear of beams, current finite element model was well simulated not only the type of ductile bending failure of under-reinforced beams but also the type of brittle shear failure of no-stirruped reinforced concrete beam.

철근콘크리트 보의 휨 및 전단파괴 예측을 위한 철근콘크리트 부재의 3차원 유한요소모델을 개발하였다. 다축구속응력 하에서의 콘크리트의 연성거동을 보다 정확히 예측하기 위해 변형률 공간에서의 콘크리트 파괴기준을 제시하였다. 3축하에서의 콘크리트 균열거동을 위해 균열발생 후 인장연화거동, 골재맞물림 및 다우얼효과를 고려한 균열면 전단전달특성을 고려토록 하였다. 휨 및 전단 파괴 양상을 갖는 보 시험체와의 비교 연구를 통하여 본 유한요소 모델은 저보강보의 연성 휨 파괴 뿐만 아니라 전단보강되지 않은 철근콘크리트 보의 취성 전단 파괴 양상을 갖는 부재의 거동 예측에도 유효한 것으로 판단되었다.

Keywords

References

  1. Bresler, B. and Scordelis, A.C. (1963), Shear Strength of Reinforced Concrete Beams, Journal of ACI, 60 (1), pp.51-73.
  2. Burns, N.H., and Siess, C.P. (1966), "Plastic hinging in reinforced concrete, ", J. Struc. Eng. Div. ASCE, 92(ST5), pp.45-64.
  3. Cho, C.G. (2000), An Analytical Study on Compressive Strength of Concrete in Flexural Regions of RC Structural Members, Ph.D Dissertation, Tokyo Institute of Technology, Japan, p.148.
  4. Cho, C.G. and Park, M.H. (2003), Finite Element Prediction of the Influence of Confinement on RC Beam-Columns under Single or Double Curvature Bending, Engineering Structures, 25 pp.1525-1536. https://doi.org/10.1016/S0141-0296(03)00120-2
  5. Elwi, A. A. and Murray, D. W. (1979), A 3D Hypoelastic Concrete Constitutive Relationship, J. Eng. Mech. Div., ASCE, Vol. 105, EM4, pp.623-641,
  6. Hotta, H. and Cho, C. G. (2000), Flexural Strength Analy-sis of RC Members Using Finite Element Models Taking Account of Triaxial Behavior of Concrete, J. of Struc. and Cons. Eng., AIJ, No. 530, pp.112-119.
  7. Hsieh, S. S., Ting, E. C., and Chen, W. F. (1979), An Elastic-Fracture Model for Concrete, Proc. 3d Eng. Mech. Div. Spec. Conf. ASCE, pp.437-440, Austin, Texas.
  8. Kotsovos, M.D. (1982), A Fundamental Explanation of the Behavior of Reinforced Concrete Beams in Flexural based on the Properties of Concrete under Multiaxial Stress, Mat. & Struct., RILEM, 15, pp.529-537.
  9. Kupfer, H. B., Hildorf, H. K., and Rusch, H. (1969), Be-havior of Concrete under Biaxial Stresses, J. of ACI, Vol. 66, No. 8, pp.656-666.
  10. Okamura, H. and Maekawa, K. (1991), Nonlinear Analysis and Constitutive Models of Reinforced Concrete, Gihodo, Japan.
  11. Saenz, L. P. (1964), Discussion of Equation for the Stress-Strain Curve of Concrete by Desayi and Krishman, J. of ACI, Vol. 61, pp.1229-1235.
  12. Smith, S. H. (1987), SRS, No. 87-12, Dept. of Civ. Arch. and Env. Eng., Univ. of Colorado, Boulder.