Browse > Article
http://dx.doi.org/10.12989/gae.2020.21.6.571

Interaction and mechanical effect of materials interface of contact zone composite samples: Uniaxial compression experimental and numerical studies  

Wang, Weiqi (School of Resources and Environmental Engineering, Wuhan University of Science and Technology)
Ye, Yicheng (School of Resources and Environmental Engineering, Wuhan University of Science and Technology)
Wang, Qihu (School of Resources and Environmental Engineering, Wuhan University of Science and Technology)
Luo, Binyu (School of Resources and Environmental Engineering, Wuhan University of Science and Technology)
Wang, Jie (School of Resources and Environmental Engineering, Wuhan University of Science and Technology)
Liu, Yang (School of Resources and Environmental Engineering, Wuhan University of Science and Technology)
Publication Information
Geomechanics and Engineering / v.21, no.6, 2020 , pp. 571-582 More about this Journal
Abstract
Aiming at the mechanical and structural characteristics of the contact zone composite rock, the uniaxial compression tests and numerical studies were carried out. The interaction forms and formation mechanisms at the contact interfaces of different materials were analyzed to reveal the effect of interaction on the mechanical behavior of composite samples. The research demonstrated that there are three types of interactions between the two materials at the contact interface: constraint parallel to the interface, squeezing perpendicular to the interface, and shear stress on the interface. The interaction is mainly affected by the differences in Poisson's ratio and elastic modulus of the two materials, stronger interface adhesion, and larger interface inclination. The interaction weakens the strength and stiffness of the composite sample, and the magnitude of weakening is positively correlated with the degree of difference in the mechanical properties of the materials. The tensile-shear stress derived from the interaction results in the axial tensile fracture perpendicular to the interface and the interfacial shear facture. Tensile cracks in stronger material will propagation into the weaker material through the bonded interface. The larger inclination angle of the interface enhances the effect of composite tensile/shear failure on the overall sample.
Keywords
contact zone composite sample; interface interaction; squeezing; derived stress; mechanical behavior;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Celleri, H.M., Sanchez, M. and Otegui J.L. (2018), "Fracture behavior of transversely isotropic rocks with discrete weak interfaces", Int. J. Numer. Anal. Meth. Geomech., 42, 2161-2176. https://doi.org/10.1002/nag.2849.   DOI
2 Chen, S.J., Yin, D.W., Jiang, N., Wang, F. and Guo, W.J. (2019), "Simulation study on effects of loading rate on uniaxial compression failure of composite rock-coal layer", Geomech. Eng., 17(4), 333-342. https://doi.org/10.12989/gae.2019.17.4.333.   DOI
3 Chen, Y.L., Zuo, J.P., Liu, D.J. and Wang, Z.B. (2018), "Deformation failure characteristics of coal-rock combined body under uniaxial compression: Experimental and numerical investigations", Bull. Eng. Geol. Environ, 78(5), 3449-3464. https://doi.org/10.1007/s10064-018-1336-0.
4 Douma, L.A.N.R., Regelink, J.A., Bertotti, G., Boersma, Q.D. and Barnhoorn, A. (2019), "The mechanical contrast between layers controls fracture containment in layered rocks", J. Struct. Geol., 127, 1-11. https://doi.org/10.1016/j.jsg.2019.06.015.
5 Dubinya, N.V. and Galybin, A.N. (2018), "On Stress Distribution in Layered Rock Masses", Izv. Phys. Solid Earth, 54(6), 904-913. https://doi.org/10.1134/s1069351318060046.   DOI
6 Wang, K. and Du, F. (2019), "Experimental investigation on mechanical behavior and permeability evolution in coal-rock combined body under unloading conditions", Arab. J. Geosci., 12(14), 1-15. https://doi.org/10.1007/s12517-019-4582-y.   DOI
7 Xing, Y., Kulatilake, PHSW. and Sandbak, L.A. (2019), "Stability assessment and support design for underground tunnels located in complex geologies and subjected to engineering activities: Case study", Int. J. Geomech., 19(5), 1-9. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001402.
8 Feng, W.K., Huang, R.Q. and Li, T.B. (2012), "Deformation analysis of a soft-hard rock contact zone surrounding a tunnel", Tunn. Undergr. Sp. Technol., 32, 190-197. http://dx.doi.org/10.1016/j.tust.2012.06.011.   DOI
9 Ferrill, D.A., Morris, A.P. and McGinnis, R.N. (2012), "Extensional fault-propagation folding in mechanically layered rocks: the case against the frictional drag mechanism", Tectonophysics, 576, 78-85. https://doi.org/10.1016/j.tecto.2012.05.023.   DOI
10 Xing, Y., Kulatilake, P.H.S.W. and Sandbak, L.A. (2018), "Effect of rock mass and discontinuity mechanical properties and delayed rock supporting on tunnel stability in an underground mine", Eng. Geol., 238, 62-75. https://doi.org/10.1016/j.enggeo.2018.03.010.   DOI
11 Yang, S.Q., Yin, P.F., Huang, Y.H. and Cheng, J.L. (2019), "Strength, deformability and X-ray micro-CT observations of transversely isotropic composite rock under different confining pressures", Eng. Fract. Mech., 214, 1-20. https://doi.org/10.1016/j.engfracmech.2019.04.030.   DOI
12 Yassaghi, A. and Salari-Rad, H. (2005), "Squeezing rock conditions at an igneous contact zone in the Taloun tunnels, Tehran-Shomal freeway, Iran: a case study", Int. J. Rock Mech. Min. Sci., 42(1), 95-108. https://doi.org/10.1016/j.ijrmms.2004.07.002.   DOI
13 Yin, D.W., Chen, S.J., Chen, B., Liub, X.Q. and Ma, H.F. (2018), "Strength and failure characteristics of the rock-coal combined body with single joint in coal", Geomech. Eng., 15(5), 1113-1124. https://doi.org/10.12989/gae.2018.15.5.1113.   DOI
14 Yue, K., Olson, J.E. and Schultz, R.A. (2018), "Layered modulus effect on fracture modeling and height containment", Proceedings of the Unconventional Resources Technology Conference, Houston, Texas, U.S.A., July.
15 Zanjani, M.M. and Soroush, A. (2019), "Numerical modelling of fault rupture propagation through layered sands", Eur. J. Environ. Civ. Eng., 23(9), 1139-1155. https://doi.org/10.1080/19648189.2017.1344148.   DOI
16 Li, Y.P., Liu, W., Yang, C.H. and Daemen, J.J.K. (2014), "Experimental investigation of mechanical behavior of bedded rock salt containing inclined interlayer", Int. J. Rock Mech. Min. Sci., 69, 39-49. http://doi.org/10.1016/j.ijrmms.2014.03.006.   DOI
17 Ajalloeian, R., Moghaddam, B. and Azimian, A. (2017), "Prediction of Rock Mass Squeezing of T4 Tunnel in Iran", Geotech. Geol. Eng., 35(2), 747-763. https://doi.org/10.1007/S10706-016-0139-Y.   DOI
18 Hu, B., Yang, S.Q., Xu, P. and Cheng, J.L. (2019), "Cyclic loading-unloading creep behavior of composite layered specimens", Acta Geophys, 67(2), 449-464. https://doi.org/10.1007/s11600-019-00261-x.   DOI
19 Huang, C.C., Yang, W.D., Duan, K., Fang, L.D., Wang, L. and Bo, C.J. (2019), "Mechanical behaviors of the brittle rock-like specimens with multi-non-persistent joints under uniaxial compression", Constr. Build. Mater., 220, 426-443. https://doi.org/10.1016/j.conbuildmat.2019.05.159.   DOI
20 Klein, E., Baud, P., Reuschle, T. and Wong, T.F. (2001), "Mechanical behaviour and failure mode of Bentheim sandstone under triaxial compression", Phys. Chem. Earth Solid Earth Geodes, 26(1-2), 21-25. https://doi.org/10.1016/S1464-1895(01)00017-5.   DOI
21 Liang, W., Yang, C., Zhao, Y., Dusseault, M.B. and Liu, J. (2007), "Experimental investigation of mechanical properties of bedded salt rock", Int. J. Rock Mech. Min. Sci., 44(3), 400-411. https://doi.org/10.1016/j.ijrmms.2006.09.007.   DOI
22 Liu, J., Wang, E.Y., Song, D.Z., Wang, S.H. and Niu, Y. (2014), "Effect of rock strength on failure mode and mechanical behavior of composite samples", Arab. J. Geosci, 8(7), 4527-4539. https://doi.org/10.1007/s12517-014-1574-9.   DOI
23 Amann, F., Undul, O. and Kaiser, P.K. (2014), "Crack initiation and crack propagation in heterogeneous sulfate-rich clay rocks", Rock Mech. Rock Eng., 47(5), 1849-1865. https://doi.org/10.1007/s00603-013-0495-3.   DOI
24 Alneasan, M., Behnia, M. and Bagherpour, R. (2019), "Analytical investigations of interface crack growth between two dissimilar rock layers under compression and tension", Eng. Geol., 259, 105188. https://doi.org/10.1016/j.enggeo.2019.105188.   DOI
25 AlTammar, M.J., Agrawal, S. and Sharma, M.M. (2019), "Effect of geological layer properties on hydraulic-fracture initiation and propagation: an experimental study", SPE J., 24(2), 757-794. https://doi.org/10.2118/184871-pa.   DOI
26 Amann, F., Button, E.A., Evans, K.F., Gischig, V.S. and Blumel, M. (2011), "Experimental study of the brittle behavior of clay shale in rapid unconfined compression", Rock Mech. Rock Eng., 44(4), 415-430. https://doi.org/10.1007/s00603-011-0156-3.   DOI
27 Zhao, Z.h., Wang, W.M., Dai, C.Q. and Yan, J.X. (2014), "Failure characteristics of three-body model composed of rock and coal with different strength and stiffness", Trans. Nonferr. Met. Soc., 24(5), 1538-1546. https://doi.org/10.1016/S1003-6326(14)63223-4.   DOI
28 Lu, S.Q., Li, L., Cheng, Y.P., Sa, Z.Y., Zhang, Y.L. and Yang, N. (2017), "Mechanical failure mechanisms and forms of normal and deformed coal combination containing gas: Model development and analysis", Eng. Fail. Anal., 80, 241-252. http://doi.org/10.1016/j.engfailanal.2017.06.022.   DOI
29 Zhang, G.H., Jiao, Y.Y., Ma, C.X., Wang, H., Chen, L.B. and Tang, Z.C. (2018), "Alteration characteristics of granite contact zone and treatment measures for inrush hazards during tunnel construction - A case study", Eng. Geol., 235, 64-80. https://doi.org/10.1016/j.enggeo.2018.01.022.   DOI
30 Zhang, N., Shi, X.L., Wang, T.T., Yang, C.H., Liu, W., Ma, H.L. and Daemen, J.J.K. (2017), "Stability and availability evaluation of underground strategic petroleum reserve (SPR) caverns in bedded rock salt of Jintan, China", Energy, 134, 504-514. http://doi.org/10.1016/j.energy.2017.06.073.   DOI
31 Niandou, H., Shao, J.F., Henry, J.P. and Fourmaintraux, D. (1997), "Laboratory investigation of the mechanical behavior of tournemire shale", Int. J. Rock Mech. Min. Sci., 34(1), 3-16. https://doi.org/10.1016/S1365-1609(97)80029-9.   DOI
32 Machek, M., Roxerova, Z., Zavada, P., Silva, P.F., Henry, B., Dedecek, P., Petrovsky, E. and Marques, F.O. (2014), "Intrusion of lamprophyre dyke and related deformation effects in the host rock salt: A case study from the Loule diapir, Portugal", Tectonophysics, 629, 165-178. https://doi.org/10.1016/j.tecto.2014.04.030.   DOI
33 McBeck, J., Mair, K. and Renard, F. (2019), "Linking macroscopic failure with micromechanical processes in layered rocks: How layer orientation and roughness control macroscopic behavior", Tectonophysics, 750, 229-242. https://doi.org/10.1016/j.tecto.2018.11.016.   DOI
34 Muller, C., Fruhwirt, T., Haase, D., Schlegel, R. and Konietzky, H. (2018), "Modeling deformation and damage of rock salt using the discrete element method", Int. J. Rock Mech. Min. Sci., 103, 230-241. https://doi.org/10.1016/j.ijrmms.2018.01.022.   DOI
35 Panda, M.K., Mohanty, S., Pingua, B.M.P. and Mishra, A.K. (2014), "Engineering geological and geotechnical investigations along the head race tunnel in Teesta Stage-III hydroelectric project, India", Eng. Geol., 181, 297-308. http://doi.org/10.1016/j.enggeo.2014.08.022.   DOI
36 Vales, F., Minh, D.N., Gharbi, H. and Rejeb, A. (2004), "Experimental study of the influence of the degree of saturation on physical and mechanical properties in Tournemire shale (France)", Appl. Clay Sci., 26, 197-207. https://doi.org/10.1016/j.clay.2003.12.032.   DOI
37 Cawood, A.J. and Bond, C.E. (2018), "3D mechanical stratigraphy of a deformed multi-layer: Linking sedimentary architecture and strain partitioning", J. Struct. Geol., 106, 54-69. https://doi.org/10.1016/j.jsg.2017.11.011.   DOI
38 Bauer, S.J., Song, B. and Sanborn, B. (2019), "Dynamic compressive strength of rock salts", Int. J. Rock Mech. Min. Sci., 113, 112-120. https://doi.org/10.1016/j.ijrmms.2018.11.004.   DOI
39 Bourne S.J. (2003), "Contrast of elastic properties between rock layers as a mechanism for the initiation and orientation of tensile failure under uniform remote compression", J. Geophys. Res., 108(B8), 1-11. https://doi.org/10.1029/2001JB001725.