• 제목/요약/키워드: avoidance-based

검색결과 1,033건 처리시간 0.026초

Optical Flow Based Collision Avoidance of Multi-Rotor UAVs in Urban Environments

  • Yoo, Dong-Wan;Won, Dae-Yeon;Tahk, Min-Jea
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제12권3호
    • /
    • pp.252-259
    • /
    • 2011
  • This paper is focused on dynamic modeling and control system design as well as vision based collision avoidance for multi-rotor unmanned aerial vehicles (UAVs). Multi-rotor UAVs are defined as rotary-winged UAVs with multiple rotors. These multi-rotor UAVs can be utilized in various military situations such as surveillance and reconnaissance. They can also be used for obtaining visual information from steep terrains or disaster sites. In this paper, a quad-rotor model is introduced as well as its control system, which is designed based on a proportional-integral-derivative controller and vision-based collision avoidance control system. Additionally, in order for a UAV to navigate safely in areas such as buildings and offices with a number of obstacles, there must be a collision avoidance algorithm installed in the UAV's hardware, which should include the detection of obstacles, avoidance maneuvering, etc. In this paper, the optical flow method, one of the vision-based collision avoidance techniques, is introduced, and multi-rotor UAV's collision avoidance simulations are described in various virtual environments in order to demonstrate its avoidance performance.

Automatic collision avoidance algorithm based on improved artificial potential field method

  • Wang Zongkai;Im Namkyu
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2023년도 춘계학술대회
    • /
    • pp.265-266
    • /
    • 2023
  • With the development of science and technology, various research on ship collision avoidance has also developed rapidly. The research and development of ship collision avoidance technology has also received high attention from many researchers. This paper proposes a new collision avoidance algorithm for ships based on the artificial force field collision avoidance method. Using the simulation platform, the simulation results show that ships can successfully avoid collision in open water under single ship and multi ship situations, and the research results are relatively ideal.

  • PDF

모델 기반 설계 기법을 이용한 무인항공기의 침입기 추적 및 충돌회피 알고리즘 설계 (Intruder Tracking and Collision Avoidance Algorithm Design for Unmanned Aerial Vehicles using a Model-based Design Method)

  • 최현진;유창선;유혁;김성욱;안석민
    • 한국항공운항학회지
    • /
    • 제25권4호
    • /
    • pp.83-90
    • /
    • 2017
  • Unmanned Aerial Vehicles(UAVs) require collision avoidance capabilities equivalent to the capabilities of manned aircraft to enter the airspace of manned aircraft. In the case of Visual Flight Rules of manned aircraft, collision avoidance is performed by 'See-and-Avoid' of pilots. To obtain those capabilities of UAVs named as 'Sense-and-Avoid', sensor-system-based intruder tracking and collision avoidance methods are required. In this study, a multi-sensor-based tracking, data fusion, and collision avoidance algorithm is designed by using a model-based design tool MATLAB/SIMULINK, and validations of the designed model and code using numerical simulations and processor-in-the-loop simulations are performed.

휴머노이드 로봇을 위한 비전기반 장애물 회피 시스템 개발 (Development of Vision based Autonomous Obstacle Avoidance System for a Humanoid Robot)

  • 강태구;김동원;박귀태
    • 전기학회논문지
    • /
    • 제60권1호
    • /
    • pp.161-166
    • /
    • 2011
  • This paper addresses the vision based autonomous walking control system. To handle the obstacles which exist beyond the field of view(FOV), we used the 3d panoramic depth image. Moreover, to decide the avoidance direction and walking motion of a humanoid robot for the obstacle avoidance by itself, we proposed the vision based path planning using 3d panoramic depth image. In the vision based path planning, the path and walking motion are decided under environment condition such as the size of obstacle and available avoidance space. The vision based path planning is applied to a humanoid robot, URIA. The results from these evaluations show that the proposed method can be effectively applied to decide the avoidance direction and the walking motion of a practical humanoid robot.

Preliminary Development of a Scale for the Measurement of Information Avoidance

  • Kap-Seon, KIM
    • 웰빙융합연구
    • /
    • 제6권1호
    • /
    • pp.23-31
    • /
    • 2023
  • Purpose: The purpose of this study is a preliminary study to develop a comprehensive information avoidance scale that includes various search contexts. Research design, data and methodology: This study is a part of exploratory sequential design of mixed method for the development of information avoidance scale. Based on the themes derived from the analysis of the in-depth interview data collected in the qualitative research of the first stage of the study, 45 preliminary items on information search and avoidance were constructed. The factors related to information searching included information recognition, information seeking purpose, and information search expectations. Individual, information, time, and system factors were related to information avoidance. Pearson's correlation analysis was performed for the correlation between factor items, and Cronbach's alpha analysis was performed for the reliability analysis of the items. Exploratory factor analysis was applied to examine the construct validity of 35 items of information avoidance. Results: Among the information avoidance items, one of the less relevant among information purpose items, two information factor items, and one time factor item were excluded. Conclusions: A secondary survey should be conducted to confirm the validity and reliability of the scale composed of adjusted items (35) based on the results of exploratory factor analysis. The strength of this preliminary scale is that it was developed based on vivid qualitative data of ordinary people who had experiences of search and avoidance in various search contexts.

비례항법을 이용한 무인 항공기의 최적 충돌 회피 기동 (Proportional Navigation-Based Optimal Collision Avoidance for UAVs)

  • 한수철;방효충
    • 제어로봇시스템학회논문지
    • /
    • 제10권11호
    • /
    • pp.1065-1070
    • /
    • 2004
  • Optimal collision avoidance algorithm for unmanned aerial vehicles based on proportional navigation guidance law is investigated this paper. Although proportional navigation guidance law is widely used in missile guidance problems, it can be used in collision avoidance problem by guiding the relative velocity vector to collision avoidance vector. The optimal navigation coefficient can be obtained if an obstacle if an obstacle moves at constant velocity vector. The stability of the proposed algorithm is also investigated. The stability can be obtained by choosing a proper navigation coefficient.

국제해상충돌예방규칙을 고려한 확률적 속도 장애물 기반의 선박 충돌회피 알고리즘 (Automatic Ship Collision Avoidance Algorithm based on Probabilistic Velocity Obstacle with Consideration of COLREGs)

  • 조용훈;한정욱;김진환;이필엽
    • 대한조선학회논문집
    • /
    • 제56권1호
    • /
    • pp.75-81
    • /
    • 2019
  • This study presents an automatic collision avoidance algorithm for autonomous navigation of unmanned surface vessels. The performance of the collision avoidance algorithm is heavily dependent on the estimation quality of the course and speed of traffic ships because collision avoidance maneuvers should be determined based on the predicted motions of the traffic ships and their trajectory uncertainties. In this study, the collision avoidance algorithm is implemented based on the Probabilistic Velocity Obstacle (PVO) approach considering the maritime collision regulations (COLREGs). In order to demonstrate the performance of the proposed algorithm, an extensive set of simulations was conducted and the results are discussed.

충돌회피환경에서의 퍼지 규칙 기반 멀티 모바일 로봇 시스템 (Multi-Mobile Robot System with Fuzzy Rule based Structure in Collision avoidance)

  • 김동원;이종호
    • 제어로봇시스템학회논문지
    • /
    • 제16권3호
    • /
    • pp.233-238
    • /
    • 2010
  • This paper describes a multi-mobile robot system with fuzzy rule based structure in collision avoidance. Collision avoidance is an important function to perform a given task collaboratively and cooperatively in multi-mobile robot environments. So the important but challenging problem is handled in this paper. Considered obstacles for collision avoidance between multi mobile robots are static, dynamic, or both of them at the same time. Using the fuzzy rule based structure, distance and angle from a robot to obstacles are described as fuzzy linguistic values and steering angle for the robot are updated from the collision environments. As a result, the multi-mobile robot can modify a global path from a robot itself to its own target. In addition, avoiding collision with static or dynamic obstacles for the robot system can be achieved. Simulation based experimental results are given to show usefulness of this method.

Korean Wide Area Differential Global Positioning System Development Status and Preliminary Test Results

  • Yun, Ho;Kee, Chang-Don;Kim, Do-Yoon
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제12권3호
    • /
    • pp.274-282
    • /
    • 2011
  • This paper is focused on dynamic modeling and control system design as well as vision based collision avoidance for multi-rotor unmanned aerial vehicles (UAVs). Multi-rotor UAVs are defined as rotary-winged UAVs with multiple rotors. These multi-rotor UAVs can be utilized in various military situations such as surveillance and reconnaissance. They can also be used for obtaining visual information from steep terrains or disaster sites. In this paper, a quad-rotor model is introduced as well as its control system, which is designed based on a proportional-integral-derivative controller and vision-based collision avoidance control system. Additionally, in order for a UAV to navigate safely in areas such as buildings and offices with a number of obstacles, there must be a collision avoidance algorithm installed in the UAV's hardware, which should include the detection of obstacles, avoidance maneuvering, etc. In this paper, the optical flow method, one of the vision-based collision avoidance techniques, is introduced, and multi-rotor UAV's collision avoidance simulations are described in various virtual environments in order to demonstrate its avoidance performance.

3D Vision-Based Local Path Planning System of a Humanoid Robot for Obstacle Avoidance

  • Kang, Tae-Koo;Lim, Myo-Taeg;Park, Gwi-Tae;Kim, Dong W.
    • Journal of Electrical Engineering and Technology
    • /
    • 제8권4호
    • /
    • pp.879-888
    • /
    • 2013
  • This paper addresses the vision based local path planning system for obstacle avoidance. To handle the obstacles which exist beyond the field of view (FOV), we propose a Panoramic Environment Map (PEM) using the MDGHM-SIFT algorithm. Moreover, we propose a Complexity Measure (CM) and Fuzzy logic-based Avoidance Motion Selection (FAMS) system to enable a humanoid robot to automatically decide its own direction and walking motion when avoiding an obstacle. The CM provides automation in deciding the direction of avoidance, whereas the FAMS system chooses the avoidance path and walking motion, based on environment conditions such as the size of the obstacle and the available space around it. The proposed system was applied to a humanoid robot that we designed. The results of the experiment show that the proposed method can be effectively applied to decide the avoidance direction and the walking motion of a humanoid robot.