DOI QR코드

DOI QR Code

Development of Vision based Autonomous Obstacle Avoidance System for a Humanoid Robot

휴머노이드 로봇을 위한 비전기반 장애물 회피 시스템 개발

  • 강태구 (고려대학교 전자전기공학과) ;
  • 김동원 (인하공업전문대학 디지털 전자과) ;
  • 박귀태 (고려대학교 전기공학과)
  • Received : 2010.07.16
  • Accepted : 2010.12.07
  • Published : 2011.01.01

Abstract

This paper addresses the vision based autonomous walking control system. To handle the obstacles which exist beyond the field of view(FOV), we used the 3d panoramic depth image. Moreover, to decide the avoidance direction and walking motion of a humanoid robot for the obstacle avoidance by itself, we proposed the vision based path planning using 3d panoramic depth image. In the vision based path planning, the path and walking motion are decided under environment condition such as the size of obstacle and available avoidance space. The vision based path planning is applied to a humanoid robot, URIA. The results from these evaluations show that the proposed method can be effectively applied to decide the avoidance direction and the walking motion of a practical humanoid robot.

Keywords

References

  1. M. Yagi and V. Lumelsky, "Biped Robot Locomotion in Scenes with Unknown Obstacles, "Proc.of IEEE Int.Conf. on Robotics and Automati on (ICRA), pp. 375-380, 1999.
  2. J. J. Kuffner, K. Nishiwaki, S. Kagami, M. Inaba, H. Inoue, "Footstep Planning Among Obstacles for Biped Robots," Proc.ofIEEE/RSJ Int. Conf. on Intelligent Robots and Systems(IROS), pp. 500-505, 2001.
  3. J. Chestnutt, M. Lau, G. Cheung, J. Kuffner, J. Hodgins, T. Kanade, "Footstep Planning for the Honda ASIMO Humanoid," Proc. of the 2005 IEEE International Conferenceon Robotics and Automation, pp. 629-634, 2005.
  4. P. Michel, J. Chestnutt, J. Kuffner, T. Kanade, "Vision-guided humanoid footstep planning for dynamic environments,"5th IEEE-RAS International Conference on Humanoid Robots, pp. 13-18, 2005.
  5. O. Stasse, B. Verrelst, B. Vanderborght, K.Yokoi, "Strategies for Humanoid Robots to Dynamically Walk Over Large Obstacles,", IEEE Transactions on Robotics, vol. 25, no. 4, pp.960-967, 2009. https://doi.org/10.1109/TRO.2009.2020354
  6. F. Kanehiro, T. Yoshimi, S. Kajita, M. Morisawa, K. Fujiwara, K. Harada, K. Kaneko, H. Hirukawa, F. Tomita, "Whole Body Locomotion Planning of Humanoid Robots based on a 3-D Grid Map," Proc. of the IEEE International Conference on Robotics and Automation, pp. 1072-1078, 2005.
  7. Y. Ayaz, A. Konno, K. Munawar, T. Tsujita, M. Uchiyama, "Planning footsteps in obstacle cluttered environments," IEEE/ASME International Conference on Advanced Intelligent Mechatronics, pp. 156-161, 2009.
  8. J.-S. Gutmann, M. Fukuchi, M. Fujita, ""The International Journal of Robotics Research vol. 27, no. 10, pp. 1117-1134, 2008. https://doi.org/10.1177/0278364908096316
  9. M. Brown and D. Lowe. "Automatic Panoramic Image Stitching using Invariant Features," International Journal of Computer Vision, vol. 74,no. 1, pp. 59-73, 2007. https://doi.org/10.1007/s11263-006-0002-3
  10. K. Zhang, J. Lu, G. Lafruit; R. Lauwereins, L. V. Gool, "Robust stereo matching with fast Normalized Cross-Correlation over shape-adaptive regions," 16th IEEE International Conference on Image Processing, pp.2357-2360, 2009.
  11. S.B. Kang, R. Szeliski, "3-D scene data recovery using omnidirictional multibaseline stereo," International Journal of Computer Vision, vol. 25, no. 2, pp. 167-83, 1997. https://doi.org/10.1023/A:1007971901577
  12. A. Krishnan, N. Ahuja, "Range estimation from focus using a non-frontal imaging camera," International Journal of Computer Vision, vol. 20, no. 3, pp. 169-185, 1996.