• Title/Summary/Keyword: avian influenza vaccine

Search Result 18, Processing Time 0.024 seconds

The Current Trend of Avian Influenza Viruses in Bioinformatics Research (생명정보학적 관점에서의 조류 인플루엔자 연구동향)

  • Ahn, In-Sung;Son, Hyeon-S.
    • Journal of Preventive Medicine and Public Health
    • /
    • v.40 no.2
    • /
    • pp.185-190
    • /
    • 2007
  • Objectives : Since the first human infection from avian influenza was reported in Hong Kong in 1997, many Asian countries have confirmed outbreaks of highly pathogenic H5N1 avian influenza viruses. In addition to Asian countries, the EU authorities also held an urgent meeting in February 2006 at which it was agreed that Europe could also become the next target for H5N1 avian influenza in the near future. In this paper, we provide the general and applicable information on the avian influenza in the bioinformatics field to assist future studies in preventive medicine. Methods : We introduced some up-to-date analytical tools in bioinformatics research, and discussed the current trends of avian influenza outbreaks. Among the bioinformatics methods, we focused our interests on two topics: pattern analysis using the secondary database of avian influenza, and structural analysis using the molecular dynamics simulations in vaccine design. Results : Use of the public genome databases available in the bioinformatics field enabled intensive analysis of the genetic patterns. Moreover, molecular dynamic simulations have also undergone remarkable development on the basis of the high performance supercomputing infrastructure these days. Conclusions : The bioinformatics techniques we introduced in this study may be useful in preventive medicine, especially in vaccine and drug discovery.

Current situation and control strategies of H9N2 avian influenza in South Korea

  • Mingeun Sagong;Kwang-Nyeong Lee;Eun-Kyoung Lee;Hyunmi Kang;Young Ki Choi;Youn-Jeong Lee
    • Journal of Veterinary Science
    • /
    • v.24 no.1
    • /
    • pp.5.1-5.16
    • /
    • 2023
  • The H9N2 avian influenza (AI) has become endemic in poultry in many countries since the 1990s, which has caused considerable economic losses in the poultry industry. Considering the long history of the low pathogenicity H9N2 AI in many countries, once H9N2 AI is introduced, it is more difficult to eradicate than high pathogenicity AI. Various preventive measures and strategies, including vaccination and active national surveillance, have been used to control the Y439 lineage of H9N2 AI in South Korea, but it took a long time for the H9N2 virus to disappear from the fields. By contrast, the novel Y280 lineage of H9N2 AI was introduced in June 2020 and has spread nationwide. This study reviews the history, genetic and pathogenic characteristics, and control strategies for Korean H9N2 AI. This review may provide some clues for establishing control strategies for endemic AIV and a newly introduced Y280 lineage of H9N2 AI in South Korea.

Strategic construction of mRNA vaccine derived from conserved and experimentally validated epitopes of avian influenza type A virus: a reverse vaccinology approach

  • Leana Rich Herrera-Ong
    • Clinical and Experimental Vaccine Research
    • /
    • v.12 no.2
    • /
    • pp.156-171
    • /
    • 2023
  • Purpose: The development of vaccines that confer protection against multiple avian influenza A (AIA) virus strains is necessary to prevent the emergence of highly infectious strains that may result in more severe outbreaks. Thus, this study applied reverse vaccinology approach in strategically constructing messenger RNA (mRNA) vaccine construct against avian influenza A (mVAIA) to induce cross-protection while targeting diverse AIA virulence factors. Materials and Methods: Immunoinformatics tools and databases were utilized to identify conserved experimentally validated AIA epitopes. CD8+ epitopes were docked with dominant chicken major histocompatibility complexes (MHCs) to evaluate complex formation. Conserved epitopes were adjoined in the optimized mVAIA sequence for efficient expression in Gallus gallus. Signal sequence for targeted secretory expression was included. Physicochemical properties, antigenicity, toxicity, and potential cross-reactivity were assessed. The tertiary structure of its protein sequence was modeled and validated in silico to investigate the accessibility of adjoined B-cell epitope. Potential immune responses were also simulated in C-ImmSim. Results: Eighteen experimentally validated epitopes were found conserved (Shannon index <2.0) in the study. These include one B-cell (SLLTEVETPIRNEWGCR) and 17 CD8+ epitopes, adjoined in a single mRNA construct. The CD8+ epitopes docked favorably with MHC peptidebinding groove, which were further supported by the acceptable ∆Gbind (-28.45 to -40.59 kJ/mol) and Kd (<1.00) values. The incorporated Sec/SPI (secretory/signal peptidase I) cleavage site was also recognized with a high probability (0.964814). Adjoined B-cell epitope was found within the disordered and accessible regions of the vaccine. Immune simulation results projected cytokine production, lymphocyte activation, and memory cell generation after the 1st dose of mVAIA. Conclusion: Results suggest that mVAIA possesses stability, safety, and immunogenicity. In vitro and in vivo confirmation in subsequent studies are anticipated.

Genetic and biological characteristics of recent Korean isolates of avian influenza virus subtype H9N2

  • Acharya, Madhav Prasad;Kwon, Hyuk-Joon;Kim, Il-Hwan;Lee, Youn-Jeong;Kim, Jae-Hong
    • Korean Journal of Veterinary Research
    • /
    • v.52 no.4
    • /
    • pp.223-230
    • /
    • 2012
  • The worldwide distribution and continuing genetic mutation of avian influenza virus (AIV) has been posed a great threat to human and animal health. A comparison of 3 isolates of AIV H9N2, A/chicken/Korea/KBNP-0028/00 (H9N2) (KBNP-0028), A/chicken/Korea/SNU8011/08 (H9N2) (SNU 8011) and an inactivated oil vaccine strain A/chicken/Korea/01310/01 (H9N2) (01310), was performed. The former 2 AIVs were isolated from field cases before and after the application of an inactivated H9N2 vaccine in 2007, respectively. The antigenic relationship, viral shedding, tissue tropism and genetic analysis were examined. The comparison of virus shedding from the cloaca and the oropharynx revealed that both isolates were more frequently isolated from the upper respiratory tract (90~100%) 1 day post inoculation (DPI) compared with isolation 5 DPI from gastrointestinal tracts (10~60%). Moreover, the isolate KBNP-0028 were recovered from all organs including bone marrow, brain and kidneys, indicating higher ability for broad tissue dissemination than that of SNU 8011. KBNP-0028 replicated earlier than other strains and with a higher titer than SNU 8011. In full-length nucleotide sequences of the NA gene and a partial sequence of the HA gene of SNU 8011, we found that there might be significant changes in tissue tropism, virus replication and genetic mutation in AIV H9N2 isolates.

Production and characterization of monoclonal antibodies against an avian influenza virus (H9N2)

  • Lim, Yong Hwan;Phan, Le Van;Mo, In-Pil;Koo, Bon-Sang;Choi, Young-Ki;Lee, Seung-Chul;Kang, Shien-Young
    • Korean Journal of Veterinary Service
    • /
    • v.40 no.3
    • /
    • pp.187-192
    • /
    • 2017
  • In this report, fifteen monoclonal antibodies (MAbs) against an avian influenza virus (H9N2 subtype) were newly produced and characterized. These MAbs proved to react to the epitopes of nucleocapsid protein (NP), hemagglutinin (HA), neuraminidase (NA) and non-structural protein 1 (NS1) of Korean H9N2 strain, respectively. Two HA-specific MAbs showed the ability to inhibit the hemagglutination activity of H9N2 subtype avian influenza virus when tested by hemagglutination inhibition (HI) assay. All MAbs did not cross-react with other avian-origin viruses (Newcastle disease virus, infectious bursal disease virus, infectious bronchitis virus and avian rotavirus) by immunofluorescence test or enzyme-linked immunosorbent assay. The MAbs produced in this study could be useful as the materials for diagnostics and therapeutics against Korean-lineage H9N2 virus infections.

Lower Antibody Response in Chickens Homozygous for the Mx Resistant Allele to Avian Influenza

  • Qu, L.J.;Li, X.Y.;Xu, G.Y.;Ning, Z.H.;Yang, N.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.4
    • /
    • pp.465-470
    • /
    • 2009
  • The chicken Mx gene has been regarded as a candidate gene for resistance to avian influenza virus (AIV). In this study, three groups of chickens with homozygotes (AA, GG) and heterozygotes (AG) of the resistant (A) and susceptible alleles (G) to AIV of the Mx gene were constructed from a line of dwarf egg-type chickens. These chickens were not examined for their resistant activities to AIV because the differential resistance had only been detected in vitro. The birds of the three groups were vaccinated with inactivated H5N2 AIV vaccine and the level of hemagglutination inhibition (HI) antibody to AIV was detected. The association between disease resistant activity to AIV and antibody response to AIV vaccination in the three groups was analyzed. The chickens with homozygous resistant allele A showed the lowest antibody levels, whereas the heterozygous chickens (AG) presented the highest antibody level after the boosting vaccination, which indicates that the efficiency of artificial selection on the resistant allele of Mx gene will be compromised since the homozygotes of the allele presented the weakest antibody response to the corresponding vaccine.

Molecular Characterization of an Avian-origin Reassortant H7N1 Influenza Virus (조류 유래 재조합 H7N1 인플루엔자 바이러스의 분자적 특성 규명)

  • Sun-Woo Yoon
    • Journal of Life Science
    • /
    • v.33 no.8
    • /
    • pp.605-611
    • /
    • 2023
  • Recently, sporadic cases of human infection by genetic reassortants of H7Nx influenza A viruses have been reported; such viruses have also been continuously isolated from avian species. In this study, A/wild bird/South Korea/sw-anu/2023, a novel reassortant of the H7N1 avian influenza virus, was analyzed using full-genome sequencing and molecular characterization. Phylogenetic analysis showed that A/wild bird/South Korea/sw-anu/2023 belonged to the Eurasian lineage of H7Nx viruses. The polymerase basic (PB)2, PB1, polymerase acidic (PA), and nucleoprotein (NP) genes of these viruses were found to be closely related to those of avian influenza viruses isolated from wild birds, while the hemagglutinin (HA), neuraminidase (NA), matrix (M), and nonstructural (NS) genes were similar to those of avian influenza viruses isolated from domestic ducks. In addition, A/wild bird/South Korea/sw-anu/2023 also had a high binding preference for avian-specific glycans in the solid-phase direct binding assay. These results suggest the presence of a new generation of H7N1 avian influenza viruses in wild birds and highlight the reassortment of avian influenza viruses found along the East Asian-Australasian flyway. Overall, H7Nx viruses circulate worldwide, and mutated H7N1 avian viruses may infect humans, which emphasizes the requirement for continued surveillance of the H7N1 avian influenza virus in wild birds and poultry.

Modulation of Humoral and Cell-Mediated Immunity Against Avian Influenza and Newcastle Disease Vaccines by Oral Administration of Salmonella enterica Serovar Typhimurium Expressing Chicken Interleukin-18

  • Rahman, Md Masudur;Uyangaa, Erdenebileg;Eo, Seong Kug
    • IMMUNE NETWORK
    • /
    • v.13 no.1
    • /
    • pp.34-41
    • /
    • 2013
  • Interleukin-18 (IL-18) has been known to induce interferon-${\gamma}$ (IFN-${\gamma}$) production and promote Th1 immunity. Although mammalian IL-18 has been characterized in great detail, the properties and application of chicken IL-18 remain largely uninvestigated as of yet. In this study, we evaluated the immunomodulatory properties of Salmonella enterica serovar Typhimurium expressing chicken interleukin-18 (chIL-18) on immune responses induced by avian influenza (AI) and Newcastle disease (ND) vaccines. After oral administration of S. enterica serovar Typhimurium expressing chIL-18, chickens were vaccinated intramuscularly with the recommended dose of either inactivated AI H9N2 vaccine or ND (B1 strain) vaccine. Chickens receiving a primary vaccination were boosted using the same protocol 7 days later. Humoral and cell-mediated immune responses were evaluated in terms of HI antibody titers and proliferation and mRNA expression of IFN-${\gamma}$ and IL-4 of peripheral blood mononuclear cells (PBMC) in response to specific antigen stimulation. According to our results, oral administration of S. enterica serovar Typhimurium expressing chIL-18 induced enhanced humoral and Th1-biased cell-mediated immunity against AI and ND vaccines, compared to that of chickens received S. enterica serovar Typhimurium harboring empty vector. Therefore, we conclude that our proposed vaccination regimen using inactivated AI and ND viruses along with oral administration of S. enterica serovar Typhimurium expressing chIL-18 may provide a novel approach in protecting chicken from currently circulating AI and ND virus strains.

Evaluation on Immunogenicity and Safety of Avian Influenza Isolate(ADL0401) as a Candidate for the Killed Vaccine against tow-Pathogenic Avian Influenza (약병원성 조류인플루엔자 사독백신개발을 위한 후보주(ADL0401)의 면역 원성 및 안전성 평가)

  • Lee J. S.;Ha D. H.;Kim J. E.;Ha B. D.;Mo I. P.
    • Korean Journal of Poultry Science
    • /
    • v.32 no.2
    • /
    • pp.113-123
    • /
    • 2005
  • Avian influenza (AI) virus (AIV) is distributed worldwide and it has been isolated from various species of wild and domestic birds. AI transfers with high speed and shows diverse pathogenicity syndroms. In Korea, several low Pathogenic AIV, H9N2, have been isolated from the commercial farms with severe decrease of egg production and mortality resulted in severe economic loss since 1996. Therefore, it has been requested to develop AI vaccines to prevent clinical signs and economic losses from the field infection of AIV. To develop a killed vaccine that efficiently prevents low pathogenic AIV (H9N2), evaluation on the pathogenicity and selection of an inactivator for H9N2 is taking place and is being tested safety and immunogenicity of vaccine produced. Based on the pathogenicity test and viral reisolation test, the ADL0401 isolate is the characteristic low pathogenic AIVs and has fairly similar biologic functions compared with MS96 which is the official low pathogenic AIV (H9N2) and one of the predominant AIV isolated from poultry farms in Korea. In antigenicity tests, the ADL0401 and MS96 virus have no significant antigenic difference. In inactivation tests, the ADL0401 isolates can be easily inactivated with $0.1\%$ Formalin at $37^{\circ}C$ within 1 hour with a little decrease of HA titer. The vaccine developed in the present report has no harmful effect on bird and forms good immune capability. Therefore, the isolates, ADL0401 can be used for a killed vaccine which can reduce the clinical signs and viral shedding in the birds infected with H9N2 low pathogenic AIVs.

SPF 닭에서 재조합 H9N3 조류 인플루엔자 백신의 효능과 안전성 평가

  • Sin, Jeong-Hwa;Mo, In-Pil
    • Proceedings of the Korea Society of Poultry Science Conference
    • /
    • 2006.11a
    • /
    • pp.90-91
    • /
    • 2006
  • To reduce the economic impact and control Low pathogenic avian influenza (LPAI), vaccination with inactivated vaccine has been considered in this country. We tried to develop inactivated vaccine with reassorted H9N3 AI virus which has different type of neuraminidase compare to those of field AI virus. Before reassorted vaccine was produced, we confirm the virus as master seed by limiting dilution, RT-PCR and sequencing method. Also, we evaluate the biological characteristics of the virus to find out the possibility of prevention against field infection of AI virus. Finally, we evaluate the safety and efficacy of the vaccine made of reassorted AI virus in the specific pathogen free (SPF) chickens. After limiting dilution, we choose RV7CE4 as a vaccine candidate and compare the gene sequence of this vaccine strain to those of AI05GA which is parents strain. Compared to amino acid sequences of specific gene of AI05GA and RV7CE4, exhibited a high degree of amino acid sequence homology. In the safety and efficacy test, there were no specific clinical signs or mortality. Reassorted H9N3 viruses were reisolated in cloaca swab on 5 days post inoculation. In the vaccine study, once or twice vaccination was performed and challenged with H9N2 field virus (01310). Vaccine has no adverse effect on birds and formed good immune capability which reduce viral shedding in the birds infected with 01310. Based on the above result, we developed reassorted H9N3 vaccine which will efficiently prevent the low pathogenic AIV (H9N2) infection in the poultry farms.

  • PDF