The Current Trend of Avian Influenza Viruses in Bioinformatics Research

생명정보학적 관점에서의 조류 인플루엔자 연구동향

  • Ahn, In-Sung (Bioinformatics Team, Supercomputing Center, Korea Institute of Science and Technology Information) ;
  • Son, Hyeon-S. (Laboratory of Computational Biology & Bioinformatics, Institute of Health and Environment, Graduate School of Public Health, Seoul National University)
  • 안인성 (한국과학기술정보연구원 슈퍼컴퓨팅센서 바이오인포매틱스팀) ;
  • 손현석 (서울대학교 보건대학원 생명정보학교실)
  • Published : 2007.03.31

Abstract

Objectives : Since the first human infection from avian influenza was reported in Hong Kong in 1997, many Asian countries have confirmed outbreaks of highly pathogenic H5N1 avian influenza viruses. In addition to Asian countries, the EU authorities also held an urgent meeting in February 2006 at which it was agreed that Europe could also become the next target for H5N1 avian influenza in the near future. In this paper, we provide the general and applicable information on the avian influenza in the bioinformatics field to assist future studies in preventive medicine. Methods : We introduced some up-to-date analytical tools in bioinformatics research, and discussed the current trends of avian influenza outbreaks. Among the bioinformatics methods, we focused our interests on two topics: pattern analysis using the secondary database of avian influenza, and structural analysis using the molecular dynamics simulations in vaccine design. Results : Use of the public genome databases available in the bioinformatics field enabled intensive analysis of the genetic patterns. Moreover, molecular dynamic simulations have also undergone remarkable development on the basis of the high performance supercomputing infrastructure these days. Conclusions : The bioinformatics techniques we introduced in this study may be useful in preventive medicine, especially in vaccine and drug discovery.

Keywords

References

  1. Avian Influenza [homepage on the Internet]. Seoul: CDC Korea; c2006 [cited 2007 Jan 5] Introduction to Avian Influenza. Available from:URL:http://avian.cdc.go.kr/sub/introduction.asp (Korean)
  2. Centers for Disease Control and Prevention [homepage on the Internet]. Atlanta: The Center; [cited 2006 Jan 10] Key Facts About Avian Influenza (Bird Flu) and Avian Influenza A (H5N1) Virus. Available from: URL:http://www.cdc.gov/flu/avian/gen-info/pdf/avianflufacts.pdf
  3. Dimmock NJ, Easton AJ, Leppard KN. Introduction to Modern Virology. Massachusetts: Blackwell Publishing; 2002. p. 297-311
  4. Liu JP. Avian influenza a pandemic waiting to happen? J Microbiol Immunol Infect 2006; 39(1): 4-10
  5. Voyles BJ. The Biology of Viruses, 2nd ed. New York.: McGraw-Hill Co.; 2002. p. 147-149, 338-341
  6. Lemon SM, Mahmoud AA. The threat of pandemic influenza: Are you ready? Biosecur Bioterror 2005; 3(1): 70-73 https://doi.org/10.1089/bsp.2005.3.70
  7. Garcia-Sastre A. Antiviral response in pandemic influenza viruses. Emerg Infect Dis 2006; 12(1): 44-47 https://doi.org/10.3201/eid1201.051186
  8. Rhonda CP, Deborah AJ, Mardelle S, Carol AK, Mary JDS, Steve S. Medical Microbiology, 4th ed. Texas: University of Texas Medical Branch at Galveston; 1996. Chap. 58
  9. Lee CW, Suarez DL, Tumpey TM, Sung HW, Kwon YK, Lee YJ, Choi JG, Joh SJ, Kim MC, Lee EK, Park JM, Lu X, Katz JM, Spackman E, Swayne DE, Kim JH. Characterization of highly pathogenic H5N1 avian influenza A viruses isolated from South Korea. J Virol 2005; 79(6): 3692-3702 https://doi.org/10.1128/JVI.79.6.3692-3702.2005
  10. CDC News. Avian Influenza: Current Situation. 2006 [cited 2007 Jan 5]. Available from: URL: http://www.cdc.gov/flu/avian/outbreaks/current.htm
  11. Kim WJ. Overview of Pandemic Influenza. J Prev Med Public Health 2005; 38(4): 373-378 (Korean)
  12. WHO News. Weekly epidemiological record 2006; 81: 173-188. Available from: URL: http:// www.who.int/wer/2006/wer8118.pdf
  13. Benson DA, Karsch-Mizrachi I, Lipman DJ, Ostell J, Wheeler DL. GenBank. Nucleic Acids Res 2007; 35(Database issue): D21-D25 https://doi.org/10.1093/nar/gkl986
  14. Ahn IS, Jeong BJ, Bae SE,Jung J, Son HS. Genomic analysis of influenza A viruses, including avian flu (H5N1) strains. Eur J Epidemiol 2006; 21(7): 511-519 https://doi.org/10.1007/s10654-006-9031-z
  15. Treanor JJ, Campbell JD, Zangwill KM, Rowe T, Wolff M. Safety and immunogenicity of an inactivated subvirion influenza A (H5N1) vaccine. N Engl J Med 2006; 354(13): 1343-1351 https://doi.org/10.1056/NEJMoa055778
  16. Booy R, Brown LE, Grohmann GS, Maclntyre CR. Pandemic vaccines: Promises and pitfalls. Med J Aust 2006; 185(10): S62-S65
  17. GSK's H5N1 flu vaccine achieves high response at low dose. Pharmaweek. 2006 July 26 [cited 2006 Dec 5] Available from: URL: http://www.pharmaweek.com/TopNews/GSK's%20H5N1.asp
  18. Bresson JL, Perronne C, Launay O, Gerdil C, Saville M, Wood J, Hoschler K, Czambon M. Safety and immunogenicity of an inactivated split-virion influenza A/Vietnam/1194/2004(H5N1) vaccine: phase I randomised trial. Lancet 2006; 367(9523): 1657-1664 https://doi.org/10.1016/S0140-6736(06)68656-X
  19. Govorkova EA, Webby RJ, Humberd J, Seiler JP, Webster RG. Immunization with reversegenetics-produced H5N1 influenza vaccine protects ferrets against homologous and heterologous challenge. J Infect Dis 2006; 194(2): 159-167 https://doi.org/10.1086/505225
  20. Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan S, Karplus M. CHARMM: A program for macromolecular energy minizat-ion and dynamics calculations. J Comp Chem 1983; 4(2): 187-217 https://doi.org/10.1002/jcc.540040211
  21. Case DA, Cheatham TE 3rd, Darden T, Gohlke H, Luo R, Merz KM Jr, Onufriev A, Simmerling C, Wang B, Woods RJ. The Amber biomolecular simulation programs. J Comp Chem 2005; 26(16): 1668-1688 https://doi.org/10.1002/jcc.20290
  22. Huang Q, Chen CL, Herrmann A. Bilayer conformation of fusion peptide of influenza virus hemagglutinin: A molecular dynamics simulation study. Biophys J 2004; 87(1): 14-22 https://doi.org/10.1529/biophysj.103.024562
  23. Han X, Bushweller JN, Cafiso DS, Tamm LK. Membrane structure and fusiontriggering conformational change of the fusion domain from influenza hemagglutinin. Nat Struct Biol 2001; 8(8): 715-720 https://doi.org/10.1038/90434
  24. Lague P, Roux B, Pastor RW. Molecular dynamics simulations of the influenza hemagglutinin fusion peptide in micelles and bilayers: Conformational analysis of peptide and lipids. J Mol Biol 2005; 354(5): 1129-1141 https://doi.org/10.1016/j.jmb.2005.10.038