• Title/Summary/Keyword: autoregressive

Search Result 945, Processing Time 0.029 seconds

A Multiple Unit Roots Test Based on Least Squares Estimator

  • Shin, Key-Il
    • Journal of the Korean Statistical Society
    • /
    • v.28 no.1
    • /
    • pp.45-55
    • /
    • 1999
  • Knowing the number of unit roots is important in the analysis of k-dimensional multivariate autoregressive process. In this paper we suggest simple multiple unit roots test statistics based on least squares estimator for the multivariate AR(1) process in which some eigenvalues are one and the rest are less than one in magnitude. The empirical distributions are tabulated for suggested test statistics. We have small Monte-Calro studies to compare the powers of the test statistics suggested by Johansen(1988) and in this paper.

  • PDF

The Asymptotic Variance of the Studentized Residual Autocorrelations for a Generalized Random Coefficient Autoregressive Processes

  • Park, Sang-Woo;Cho, Sin-Sup;Hwang, Sun Y.
    • Journal of the Korean Statistical Society
    • /
    • v.26 no.4
    • /
    • pp.531-541
    • /
    • 1997
  • The asymptotic distribution of residual autocorrelation functions from a generalized p-order random coefficient autoregressive process (GRCA(p)) is derived. To this end, we first describe the GRCA(p) models and then consider the normalised residuals after fitting the model. This result can be applied to the residual analysis for the diagonostic purpose.

  • PDF

QUEUE RESPONSE APPROXIMATION WITH DISCRETE AUTOREGRESSIVE PROCESSES OF ORDER 1

  • Kim, Yoo-Ra;Hwang, Gang-Uk
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.12 no.1
    • /
    • pp.33-39
    • /
    • 2008
  • We consider a queueing system fed by a superposition of multiple discrete autoregressive processes of order 1, and propose an approximation method to estimate the overflow probability of the system. Numerical examples are provided to validate the proposed method.

  • PDF

Estimation for Autoregressive Models with GARCH(1,1) Error via Optimal Estimating Functions.

  • Kim, Sah-Myeong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.10 no.1
    • /
    • pp.207-214
    • /
    • 1999
  • Optimal estimating functions for a class of autoregressive models with GARCH(1,1) error are discussed. The asymptotic properties of the estimator as the solution of the optimal estimating equation are investigated for the models. We have also some simulation results which suggest that the proposed optimal estimators have smaller sample variances than those of the Conditional least-squares estimators under the heavy-tailed error distributions.

  • PDF

Bootstrap Confidence Intervals for the INAR(p) Process

  • Kim, Hee-Young;Park, You-Sung
    • Communications for Statistical Applications and Methods
    • /
    • v.13 no.2
    • /
    • pp.343-358
    • /
    • 2006
  • The distributional properties of forecasts in an integer-valued time series model have not been discovered yet mainly because of the complexity arising from the binomial thinning operator. We propose two bootstrap methods to obtain nonparametric prediction intervals for an integer-valued autoregressive model : one accommodates the variation of estimating parameters and the other does not. Contrary to the results of the continuous ARMA model, we show that the latter is better than the former in forecasting the future values of the integer-valued autoregressive model.

Testing the Randomness of the Coefficients In First Order Autoregressive Processes

  • Park, Sangwoo;Lee, Sangyeol;Sun Y. Hwang
    • Journal of the Korean Statistical Society
    • /
    • v.27 no.2
    • /
    • pp.189-195
    • /
    • 1998
  • In this paper, we are concerned with the problem of testing the randomness of the coefficients in a first order autoregressive model. A consistent test based on prediction error is suggested. It is shown that under the null hypothesis, the test statistic is asymptotically normal.

  • PDF

Unit Root Tests for Autoregressive Moving Average Processes Based on M-estimators

  • Shin, Dong-Wan;Lee, Oesook
    • Journal of the Korean Statistical Society
    • /
    • v.31 no.3
    • /
    • pp.301-314
    • /
    • 2002
  • For autoregressive moving average (ARMA) models, robust unit root tests are developed using M-estimators. The tests are parametric in the sense ARMA parameters are estimated jointly with unit roots. A Monte-Carlo experiment reveals superiority of the parametric tests over the semipararmetric tests of Lucas (1995a) in terms of both empirical sizes and powers.

Engineered Surface Characterization by Space Series Function (공간 계열 함수를 이용한 가공 표면의 특성 연구)

  • Hong, Minsung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.12
    • /
    • pp.120-128
    • /
    • 1996
  • An attempt is made to characterize and synthesize engineered surfaces. The proposed method is not only an analytical tool to characterize but also to generate/synthesize three-dimensional surfaces. The developed method expresses important engineered surface characteristics such as the autocorrelation or power spectrum density functions in terms of the two-dimensional autoregressive coefficients.

  • PDF

A Leading-price Analysis of Wando Abalone Producer Prices by Shell Size Using VAR Model (VAR 모형을 이용한 크기별 완도 전복가격의 선도가격 분석)

  • Nam, Jongoh;Sim, Seonghyun
    • Ocean and Polar Research
    • /
    • v.36 no.4
    • /
    • pp.327-341
    • /
    • 2014
  • This study aims to analyze causality among Wando abalone producer prices by size using a vector autoregressive model to expiscate the leading-price of Wando abalone in various price classes by size per kg. This study, using an analytical approach, applies a unit-root test for stability of data, a Granger causality test to learn about interaction among price classes by size for Wando abalone, and a vector autoregressive model to estimate the statistical impact among t-1 variables used in the model. As a result of our leading-price analysis of Wando abalone producer prices by shell size using a VAR model, first, DF, PP, and KPSS tests showed that the Wando abalone monthly price change rate by size differentiated by logarithm were stable. Second, the Granger causality relationship analysis showed that the price change rate for big size abalone weakly led the price change rate for the small and medium sizes of abalone. Third, the vector autoregressive model showed that three price change rates of t-1 period variables statistically, significantly impacted price change rates of own size and other sizes in t period. Fourth, the impulse response analysis indicated that the impulse responses of structural shocks for price change rate for big size abalone was relatively more powerful in its own size and in other sizes than shocks emanating from other sizes. Fifth, the variance decomposition analysis indicated that the price change rate for big size abalone was relatively more influential than the price change rates for medium and small size abalone.