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ABSTRACT. We consider a queueing system fed by a superposition of multiple discrete autore-
gressive processes of order 1, and propose an approximation method to estimate the overflow
probability of the system. Numerical examples are provided to validate the proposed method.

1. INTRODUCTION

Video teleconference services are expected to be substantial portion of the traffic in the
future broadband networks [1], and the queue response of video services is one of important
performance metrics in the design of the future broadband networks supporting good quality of
services. Recently, it has been shown that discrete autoregressive processes of order 1 (DAR(1)
processes) provide good performance models for video teleconference traffic [1],[2],[3],[4].
For example, Heyman [1] studied the validity of the DAR process by investigating the system
performance such as the packet loss rate through simulations.

While most studies on the queue response of video teleconference traffic are based on sim-
ulations, Hwang et al. [5] and Hwang and Sohraby [6] developed new analytic methods to
analyze a queueing system fed by a single DAR(1) process. Elwalid et al. [4] considered a
queueing system fed by a superposition of multiple DAR(1) processes and estimated the over-
flow probability of the queue length distribution based on the mathematical analysis. Their
method is based on a single exponential form which is called the CDE (Chernoff-Dominant
Eigenvalue) method.

In this paper, we consider a queueing system fed by a superposition of multiple video tele-
conference traffic, each of which is modelled by the DAR(1) process as in Elwalid et al. [4],
and propose an approximation method to estimate the overflow probability of the queue length
distribution based on our previous analytic results in Hwang and Sohraby [7]. While the CDE
method in [4] is based on a single exponential form, our method is based on a linear sum of
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FIGURE 1. A discrete autoregressive process of order 1

two exponential forms. The reason why we use the linear sum of two exponential forms comes
from the fact that two different time scale components - a burst scale component and a packet
scale component - exist in the overflow probability of the queue length distribution for a general
queueing model fed by bursty input traffic. Even though our method needs more parameters
than Elwalid et al. [4], all the parameters are easily computed as shown later. Using our lin-
ear sum of two exponential forms we compute the overflow probability of the queue length
distribution, and compare it with the simulation result. Our comparison study shows that our
approximation method performs well.

The remainder of this paper is organized as follows. In section 2, we introduce the DAR(1)
process and describe the system model considered in this paper. We also give some known
results which will be used in our approximation method. In section 3, we propose a new
approximation method to estimate the overflow probability of the queue length distribution. In
section 4, we provide some numerical results to show the validity of our approximation method.
In section 5, we give our conclusions.

2. MATHEMATICAL MODELLING AND KNOWN RESULTS

We first introduce a DAR(1) process. To define a DAR(1) process, we consider a sequence
of independent and identically distributed (i.i.d.) random variables {Bn}n≥1. We assume that
Bn takes its values on N = {0, 1, 2, · · · }. A DAR(1) process {An} is then defined by the
following equations:

A1 = B1,

An+1 = (1− αn)An + αnBn, n ≥ 1,

where {αn}n≥1 are i.i.d. Bernoulli random variables with P{αn = 1} = p (0 < p ≤ 1), and
independent of the sequence {Bn}. The stochastic properties of the DAR(1) process can be
found in Hwang and Sohraby [7] and references therein.

Now we consider a discrete time queueing system and time axis is divided into slots of equal
size. The queueing system is fed by a superposition of N identical video teleconference traffic
where source i is modelled by a DAR(1) process with {A(i)

n , B
(i)
n }. That is, the number of

packets arriving at the system in slot n is given by
∑N

i=1 A
(i)
n . The service time of a packet is

assumed to be one slot.
For later use, let ρ be the offered load of the system which is given by [7]

ρ =
N∑

i=1

E[B(i)
n ] = N · E[B(1)

n ].
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Let qn denote the queue length of the system at time n. Then the evolution equation for {qn}
is given by

qn+1 = (qn − 1)+ +
N∑

i=1

A
(i)
n+1.

Let q denote the queue length at an arbitrary time in the steady state. Recently, Hwang and
Sohraby [7] computed the expectation E[q] and the second moment E[q2] of the queue length
distribution in the steady state as follows.

Theorem 2.1. [7] In the steady state, the expectation E[q] of the queue length distribution is
given by

E[q] =
ρ

2
+

v

2(1− ρ)
+

(1− p)v
p(1− ρ)

− (1− p)ρ
p

.

Here, v denotes the variance of
∑N

i=1 B(i), and B(i) is a generic random variable for {B(i)
n }.

Theorem 2.2. [7] In the steady state, the second moment E[q2] is given by

E[q2] = E[q̃2]− (1− p)ρ2(N − 1)
Np2

where E[q̃2] is given by

E[q̃2](1− ρ) = E[q]
{

1− 2ρ

p
+

2− p

p
(v + ρ2)

}

+E[(
N∑

i=1

B(i))3]
{

2(1− p)
p2

+
1
3

}

+
(1− p)2

p2

{
2ρ(1− ρ)− 2(v + ρ2)

}

+
1− p

p2

{−2ρp(v + ρ2)− (2 + p)v + pρ(1− ρ)
}

+ρ2 − ρ(v + ρ2)− 1
3
ρ.

Then, since we know the expectation E[q] and the second moment E[q2], the variance
V ar[q] of the queue length distribution in the steady state is easily computed by V ar[q] =
E[q2]−E[q]2. Therefore, from now on we assume that we know E[q] and V ar[q] in the steady
state.

3. OVERFLOW PROBABILITY APPROXIMATION

First, we presume that the overflow probability of the queue length is well approximated by
a linear sum of two exponential forms as follows:

P{q > x} ≈ ae−δ1x + (ρ− a)e−δ2x, (1)
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where a, δ1, and δ2 are constants to be determined and δ1 > δ2 > 0.
If the approximation (1) is good enough to estimate the overflow probability of the queue

length distribution, then the expectation and variance of the queue length distribution are well
approximated as follows.

Lemma 3.1. The expectation and variance of the queue length distribution are well approxi-
mated by

E[q] ≈ a

δ1
+

ρ− a

δ2
, (2)

V ar[q] ≈ 2a

δ2
1

+
2(ρ− a)

δ2
2

− (E[q])2. (3)

Proof. From equation (1), we see that the distribution of the queue length q can be derived
from a mixture of two exponential random variables with respective parameters δ1 and δ2 as
follows. Let Z be a random variable defined by

Z =





0 with probability 1− ρ,
1 with probability a,
2 with probability ρ− a.

Then we get

E[q] ≈ E[E[q|Z]]
= aE[X1] + (ρ− a)E[X2]

where X1 and X2 are exponential random variables with parameters δ1 and δ2, respectively.
Since E[X1] = 1

δ1
and E[X2] = 1

δ2
we get

E[q] ≈ a

δ1
+

ρ− a

δ2
.

Similarly, we get

E[q2] ≈ E[E[q2|Z]]
= aE[X2

1 ] + (ρ− a)E[X2
2 ]

=
2a

δ2
1

+
2(ρ− a)

δ2
2

.

This completes the proof. ¤
Then, we can obtain the following theorem which shows the relations between the expecta-

tion and variance of the queue length distribution and the parameters a and δ1.

Theorem 3.2.
1
δ1

=
V ar[q] + (E[q])2 − 2ρ/δ2

2

2(E[q]− ρ/δ2)
− 1

δ2
. (4)

a =
E[q]− ρ/δ2

1
δ1
− 1

δ2

. (5)



QUEUE RESPONSE APPROXIMATION WITH DISCRETE AUTOREGRESSIVE PROCESSES OF ORDER 1 37

Proof. From (2) and (3) we obtain

E[q]− ρ

δ2
= a

(
1
δ1
− 1

δ2

)
(6)

V ar[q] + (E[q])2 =
2a

δ2
1

+
2(ρ− a)

δ2
2

= 2a

(
1
δ2
1

− 1
δ2
2

)
+

2ρ

δ2
2

= 2a
(

1
δ1

+
1
δ2

)
·
(

1
δ1
− 1

δ2

)
+

2ρ

δ2
2

. (7)

Substituting (6) into (7) yields equation (4). In addition, from (6) we obtain equation (5). ¤

If we know the constant δ2, then we can obtain two constants δ1 and a from (4) and (5),
respectively. Accordingly, it remains to compute δ2. To do it, we first truncate the distribution
of the random variable Bn by a constant number M as follows:

bi = P{Bn = i} for 0 ≤ i ≤ M − 1, bM =
∑

i≥M

P{Bn = i}. (8)

Then it was shown that δ2 is the largest solution of the following equation [4], [8]:

M∑

i=0

pbi

ex(1/N−i) − (1− p)
= 1. (9)

By solving the above equation (9) the constant δ2 can be obtained numerically.
Remark: When we use equation (4) to compute the constant δ1, we have δ1 < δ2 in some

cases, which violates our assumption that δ1 > δ2. In these cases we propose to use either the
following simple approximation

P{q > x} ≈ ρe−δ2x

or the CDE method proposed by Elwalid et al. [4] instead of equation (1). In fact, a number
of numerical studies reveal that the condition δ1 > δ2 is valid when V ar[q] is not significantly
large.

4. NUMERICAL EXAMPLES

In this section, we give some numerical examples to check the validity of our method. In
numerical examples we assume that the random variables {Bn} are according to a negative
binomial distribution because previous empirical studies showed that the negative binomial
distribution is a good mathematical model for the random variables {Bn} when the DAR(1)
process is used to model a VBR-coded video teleconference traffic [1], [4]. We simulate our
system and compare the resulting overflow probability with the proposed formula (1). In all
figures, the results obtained from the approximation formula (1) are denoted by Approximation
and those obtained from simulation are denoted by Simulation. For simplicity, we omit the
confidence intervals in the resulting figures.
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FIGURE 2. The overflow probability in experiment I
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FIGURE 3. The overflow probability in experiment II

In the first example, called experiment I, we consider 12 homogeneous DAR(1) processes
where p = P{αn = 1} = 0.15 and Bn is according to a negative binomial distribution with
parameters (3, 0.98), i.e.,

P{Bn = k} =
(

k + 3− 1
k

)
(0.98)3(0.02)k.

The truncation value M in equation (8) is 5. The results from experiment I are plotted in
Figure 2. As shown in Figure 2 the proposed formula (1) predicts the queue response well.

In the second experiment, called experiment II, we consider 35 homogeneous DAR(1) pro-
cess where p = P{αn = 1} = 0.3 and Bn is according to a negative binomial distribution
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with parameters (2, 0.99). The truncation value M in equation (8) is 4. The results from ex-
periment II are plotted in Figure 3 which also shows that the proposed formula (1) predicts the
queue response well.

We summarize parameters used in experiments I and II in Table 1. The resulting values of
the constants such as a, ρ, δ1, and δ2 for the proposed formula (1) are summarized in Table 2.

TABLE 1. Parameters used in experiments I and II

N M p Parameters for Bn

Experiment I 12 5 0.15 (3, 0.98)
Experiment II 35 4 0.3 (2, 0.99)

TABLE 2. Resulting values of the constants for the proposed formula (1)

a ρ δ1 δ2

Experiment I 0.23026 0.73469 0.18673 0.04069
Experiment II 0.19818 0.70707 0.33639 0.10132

5. CONCLUSIONS

In this paper, we propose an approximation method to estimate the queue length distribution
of our system. Our method is to use a linear combination of two exponential forms based
on some analytic results and the observation that the overflow probability has two time scale
components. We also give some numerical examples to show the validity of our proposed
method.
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