• Title/Summary/Keyword: autonomous vehicle

Search Result 1,294, Processing Time 0.027 seconds

Development of I2V Communication-based Collision Risk Decision Algorithm for Autonomous Shuttle Bus (자율주행 셔틀버스의 통신 정보 융합 기반 충돌 위험 판단 알고리즘 개발)

  • Lee, Seungmin;Lee, Changhyung;Park, Manbok
    • Journal of Auto-vehicle Safety Association
    • /
    • v.11 no.3
    • /
    • pp.19-29
    • /
    • 2019
  • Recently, autonomous vehicles have been studied actively. Autonomous vehicles can detect objects around them using their on board sensors, estimate collision probability and maneuver to avoid colliding with objects. Many algorithms are suggested to prevent collision avoidance. However there are limitations of complex and diverse environments because algorithm uses only the information of attached environmental sensors and mainly depends on TTC (time-to-Collision) parameter. In this paper, autonomous driving algorithm using I2V communication-based cooperative sensing information is developed to cope with complex and diverse environments through sensor fusion of objects information from infrastructure camera and object information from equipped sensors. The cooperative sensing based autonomous driving algorithm is implemented in autonomous shuttle bus and the proposed algorithm proved to be able to improve the autonomous navigation technology effectively.

Study on the Evaluation Method of Autonomous Vehicle Driving Ability Based on Virtual Reality (가상환경 기반 자율주행 운전능력 평가방안 연구)

  • Kim, Joong Hyo;Kim, Do Hoon;Joo, Sung Kab;Oh, Seok Jin
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.20 no.5
    • /
    • pp.202-217
    • /
    • 2021
  • Following the fatal accident of pedestrians caused by Autonomous Vehicle by Uber, the world's largest ride-hailing company, two people were killed in a self-driving car accident by Tesla in April. There is a need to ensure the safety of road users. Accordingly, in order to secure the safety of Autonomous Vehicle driving, it is necessary to evaluate Autonomous Vehicle driving technologies in various situations based on the road and traffic environment in which the Autonomous vehicle will actually drive. Therefore, this study used UC-win/Road ver.14.0 based on general driver's license test questions to present a virtual reality-based Autonomous Vehicles driving ability evaluation tool among various driving ability test method. Based on this, it was intended to test driving ability for unexpected situations in complex and diverse driving environments, and to confirm its practical applicability as an optimal tool for Autonomous vehicle ability test and evaluation.

A Study of Hazard Analysis and Monitoring Concepts of Autonomous Vehicles Based on V2V Communication System at Non-signalized Intersections (비신호 교차로 상황에서 V2V 기반 자율주행차의 위험성 분석 및 모니터링 컨셉 연구)

  • Baek, Yun-soek;Shin, Seong-geun;Ahn, Dae-ryong;Lee, Hyuck-kee;Moon, Byoung-joon;Kim, Sung-sub;Cho, Seong-woo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.19 no.6
    • /
    • pp.222-234
    • /
    • 2020
  • Autonomous vehicles are equipped with a wide rage of sensors such as GPS, RADAR, LIDAR, camera, IMU, etc. and are driven by recognizing and judging various transportation systems at intersections in the city. The accident ratio of the intersection of the autonomous vehicles is 88% of all accidents due to the limitation of prediction and judgment of an area outside the sensing distance. Not only research on non-signalized intersection collision avoidance strategies through V2V and V2I is underway, but also research on safe intersection driving in failure situations is underway, but verification and fragments through simple intersection scenarios Only typical V2V failures are presented. In this paper, we analyzed the architecture of the V2V module, analyzed the causal factors for each V2V module, and defined the failure mode. We presented intersection scenarios for various road conditions and traffic volumes. we used the ISO-26262 Part3 Process and performed HARA (Hazard Analysis and Risk Assessment) to analyze the risk of autonomous vehicle based on the simulation. We presented ASIL, which is the result of risk analysis, proposed a monitoring concept for each component of the V2V module, and presented monitoring coverage.

Development of Control System for Autonomous Parallel Parking (자율적 평행주차 제어시스템의 개발)

  • 손민혁;부광석;송정훈;김흥섭
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.5
    • /
    • pp.176-182
    • /
    • 2003
  • The researches for autonomous vehicle have been implemented in many studies, but most studies were confined to the lane fol1owing and changing. This paper addresses a problem of autonomous lane following parking a nonholonomic vehicle. The algorithm for image processing by the hough transform and controlling a steering angle and speed to park a nonholonomic vehicle is developed. The developed system which integrated the control algorithm for parking and vision algorithm for line traction tested with RC car and verified by the performance of the detection of parking area and the reactive parking without collisions.

Quadrotor path planning using A* search algorithm and minimum snap trajectory generation

  • Hong, Youkyung;Kim, Suseong;Kim, Yookyung;Cha, Jihun
    • ETRI Journal
    • /
    • v.43 no.6
    • /
    • pp.1013-1023
    • /
    • 2021
  • In this study, we propose a practical path planning method that combines the A* search algorithm and minimum snap trajectory generation. The A* search algorithm determines a set of waypoints to avoid collisions with surrounding obstacles from a starting to a destination point. Only essential waypoints (waypoints necessary to generate smooth trajectories) are extracted from the waypoints determined by the A* search algorithm, and an appropriate time between two adjacent waypoints is allocated. The waypoints so determined are connected by a smooth minimum snap trajectory, a dynamically executable trajectory for the quadrotor. If the generated trajectory is invalid, we methodically determine when intermediate waypoints are needed and how to insert the points to modify the trajectory. We verified the performance of the proposed method by various simulation experiments and a real-world experiment in a forested outdoor environment.

A Heuristic Based Navigation Algorithm for Autonomous Guided Vehicle (경험적 방법에 기초한 무인 반송차의 항법 알고리즘)

  • Cha, Y.Y.;Gweon, D.G.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.1
    • /
    • pp.58-67
    • /
    • 1995
  • A path planning algorithm using a laser range finder are presented for real-tiem navigation of an autonomous guided vehicle. Considering that the laser range finder has the excellent resolution with respect to angular and distance measurements, a sophisticated local path planning algorithm is achieved by using the human's heuristic method. In the case of which the man knows not rhe path, but the goal direction, the man forwards to the goal direction, avoids obstacle if it appears, and selects the best pathway when there are multi-passable ways between objects. These heuristic principles are applied to the path decision of autonomous guided vehicle such as forward open, side open and no way. Also, the effectiveness of the established path planning algorithm is estimated by computer simulation in complex environment.

  • PDF

Traffic Operation Strategy for the Mixed Traffic Flow on Autonomous Vehicle Pilot Zone: Focusing on Pangyo Zero City (자율주행차 혼재 시 시범운행지구 교통운영전략 수립: 판교제로시티를 중심으로)

  • Donghyun Lim;Woosuk Kim;Jongho Kim;Hyungjoo Kim
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.1
    • /
    • pp.172-191
    • /
    • 2023
  • This study was undertaken to strategize the mixed traffic operation of autonomous vehicles in the pilot zone. This was achieved by analyzing the changes expected when autonomous vehicles are mixed in the autonomous vehicle pilot zone. Although finding a safe and efficient traffic operation strategy is required for the pilot zone to serve as a test bed for autonomous vehicles, there is no available operation strategy based on the mixture of autonomous vehicles. In order to presents a traffic operation strategies for each period of autonomous vehicle introduction, traffic efficiency and safety analysis was performed according to the autonomous vehicle market percentage rate. Based on the analysis results, the introduction stage was divided into introductory stage, transition period, and stable period based on the autonomous vehicle market share of 30% and 70%. This study presents the following traffic operation strategies. Considering the traffic flow operation strategy, we suggest the advancement of the existing road infrastructure at the introductory stage, and operating an autonomous driving lane and the mileage system during the transition period. We also propose expanding the operation of autonomous driving lanes and easing the speed limit during the stable period. In the traffic safety strategy, we present a manual and legal system for responding to autonomous vehicle accidents in the introductory stage, an analysis of the causes of autonomous vehicle accidents and the implementation of preventive policies in the transition period, and the advancement of the autonomous system and the reinforcement of the security system during the stable period. Through the traffic operation strategy presented in this study, we foresee the possibility of preemptively responding to the changes of traffic flow and traffic safety expected due to the mixture of autonomous vehicles in the autonomous vehicle pilot zone in the future.

Development of an Autonomous Navigation System for Unmanned Ground Vehicle

  • Kim, Yoon-Gu;Lee, Ki-Dong
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.3 no.4
    • /
    • pp.244-250
    • /
    • 2008
  • This paper describes the design and implementation of an unmanned ground vehicle (UGV) and also estimates how well autonomous navigation and remote control of UGV can be performed through the optimized arbitration of several sensor data, which are acquired from vision, obstacle detection, positioning system, etc. For the autonomous navigation, lane detection and tracing, global positioning, and obstacle avoidance are necessarily required. In addition, for the remote control, two types of experimental environments are established. One is to use a commercial racing wheel module, and the other is to use a haptic device that is useful for a user application based on virtual reality. Experimental results show that autonomous navigation and remote control of the designed UGV can be achieved with more effectiveness and accuracy using the proper arbitration of sensor data and navigation plan.

  • PDF

Position Recognition System for Autonomous Vehicle Using the Symmetric Magnetic Field

  • Kim, Eun-Ju;Kim, Eui-Sun;Lim, Young-Cheol
    • Journal of Sensor Science and Technology
    • /
    • v.22 no.2
    • /
    • pp.111-117
    • /
    • 2013
  • The autonomous driving method using magnetic sensors recognizes the position by measuring magnetic fields in autonomous robots or vehicles after installing magnetic markers in a moving path. The Position estimate method using magnetic sensors has an advantage of being affected less by variation of driving environment such as oil, water and dust due to the use of magnetic field. It also has the advantages that we can use the magnet as an indicator and there is no consideration for power and communication environment. In this paper, we propose an efficient sensor system for an autonomous driving vehicle supplemented for existing disadvantage. In order to efficiently eliminate geomagnetism, we analyze the components of the horizontal and vertical magnetic field. We propose an algorithm for position estimation and geomagnetic elimination to ease analysis, and also propose an initialization method for sensor applied in the vehicle. We measured and analyzed the developed system in various environments, and we verify the advantages of proposed methods.

Autonomous Navigation of KUVE (KIST Unmanned Vehicle Electric) (KUVE (KIST 무인 주행 전기 자동차)의 자율 주행)

  • Chun, Chang-Mook;Suh, Seung-Beum;Lee, Sang-Hoon;Roh, Chi-Won;Kang, Sung-Chul;Kang, Yeon-Sik
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.7
    • /
    • pp.617-624
    • /
    • 2010
  • This article describes the system architecture of KUVE (KIST Unmanned Vehicle Electric) and unmanned autonomous navigation of it in KIST. KUVE, which is an electric light-duty vehicle, is equipped with two laser range finders, a vision camera, a differential GPS system, an inertial measurement unit, odometers, and control computers for autonomous navigation. KUVE estimates and tracks the boundary of road such as curb and line using a laser range finder and a vision camera. It follows predetermined trajectory if there is no detectable boundary of road using the DGPS, IMU, and odometers. KUVE has over 80% of success rate of autonomous navigation in KIST.