DOI QR코드

DOI QR Code

Quadrotor path planning using A* search algorithm and minimum snap trajectory generation

  • Hong, Youkyung (Autonomous Unmanned Vehicle Research Department, Electronics and Telecommunications Research Institute) ;
  • Kim, Suseong (Autonomous Unmanned Vehicle Research Department, Electronics and Telecommunications Research Institute) ;
  • Kim, Yookyung (Autonomous Unmanned Vehicle Research Department, Electronics and Telecommunications Research Institute) ;
  • Cha, Jihun (Autonomous Unmanned Vehicle Research Department, Electronics and Telecommunications Research Institute)
  • Received : 2020.03.09
  • Accepted : 2021.03.16
  • Published : 2021.12.01

Abstract

In this study, we propose a practical path planning method that combines the A* search algorithm and minimum snap trajectory generation. The A* search algorithm determines a set of waypoints to avoid collisions with surrounding obstacles from a starting to a destination point. Only essential waypoints (waypoints necessary to generate smooth trajectories) are extracted from the waypoints determined by the A* search algorithm, and an appropriate time between two adjacent waypoints is allocated. The waypoints so determined are connected by a smooth minimum snap trajectory, a dynamically executable trajectory for the quadrotor. If the generated trajectory is invalid, we methodically determine when intermediate waypoints are needed and how to insert the points to modify the trajectory. We verified the performance of the proposed method by various simulation experiments and a real-world experiment in a forested outdoor environment.

Keywords

Acknowledgement

Electronics and Telecommunications Research Institute (ETRI) grant funded by the Korean government (2017-0-00067, Development of ICT Core Technologies for Safe Unmanned Vehicles).

References

  1. R. Allen and M. Pavone, A real-time framework for kinodynamic planning with application to quadrotor obstacle avoidance, in Proc. AIAA Guid. Navig. Control Conf. (San Diego, CA, USA), Jan. 2016.
  2. S. Liu et al., Planning dynamically feasible trajectories for quadrotors using safe flight corridors in 3-d complex environments, IEEE Robot. Autom. Lett. 2 (2017), no. 3, 1688-1695. https://doi.org/10.1109/LRA.2017.2663526
  3. H. Oleynikova et al., Safe local exploration for replanning in cluttered unknown environments for microaerial vehicles, IEEE Robot. Autom. Lett. 3 (2018), no. 3, 1474-1481. https://doi.org/10.1109/lra.2018.2800109
  4. J. Zhang et al., Falco: Fast likelihood-based collision avoidance with extension to human-guided navigation, J. Field Robot. 37 (2020), no. 8, 1300-1313. https://doi.org/10.1002/rob.21952
  5. S. Liu et al., Search-based motion planning for quadrotors using linear quadratic minimum time control, IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), 2017 (2017), 2872-2879.
  6. J. Huh et al., Mobile robot exploration in indoor environment using topological structure with invisible barcodes, ETRI J. 29 (2007), no. 2, 189-200. https://doi.org/10.4218/etrij.07.0106.0066
  7. B. Park, J. Choi, and W. K. Chung, Incremental hierarchical roadmap construction for efficient path planning, ETRI J. 40 (2018), no. 4, 458-470. https://doi.org/10.4218/etrij.2018-0041
  8. S. M. LaValle, Rapidly-exploring random trees: A new tool for path planning, Iowa State University, Ames, IA, USA, Tech. Rep. TR 98-11, 1998.
  9. W.-K. Lee, I.-S. Kim, and Y.-D. Hong, Approach toward footstep planning considering the walking period: Optimizationbased fast footstep planning for humanoid robots, ETRI J. 40 (2018), no. 4, 471-482. https://doi.org/10.4218/etrij.2018-0058
  10. S. Noh et al., Co-pilot agent for vehicle/driver cooperative and autonomous driving, ETRI J. 37 (2015), no. 5, 1032-1043. https://doi.org/10.4218/etrij.15.0114.0095
  11. S. Liu et al., Search-based motion planning for aggressive flight in se (3), IEEE Robot. Autom. Lett. 3 (2018), no. 3, 2439-2446. https://doi.org/10.1109/lra.2018.2795654
  12. B. Zhou et al., Robust and efficient quadrotor trajectory generation for fast autonomous flight, IEEE Robot. Autom. Lett. 4 (2019), no. 4, 3529-3536. https://doi.org/10.1109/lra.2019.2927938
  13. D. Mellinger and V. Kumar, Minimum snap trajectory generation and control for quadrotors, in Proc. IEEE Int. Conf. Robot. Autom. (Shanghai, China), May 2011, pp. 2520-2525.
  14. C. Richter, A. Bry, and N. Roy, Polynomial trajectory planning for aggressive quadrotor flight in dense indoor environments, in Robotics Research, vol. 114, Springer, Cham, Switzerland, 2016, pp. 649-666.
  15. S. Grzonka, G. Grisetti, and W. Burgard, A fully autonomous indoor quadrotor, IEEE Trans. Robot. 28 (2011), no. 1, 90-100. https://doi.org/10.1109/TRO.2011.2162999
  16. D. Mellinger, A. Kushleyev, and V. Kumar, Mixed-integer quadratic program trajectory generation for heterogeneous quadrotor teams, in Proc. IEEE Int. Conf. Robot. Autom. (Saint Paul, MN, USA, 2012, pp. 477-483.
  17. S. Tang and V. Kumar, Mixed integer quadratic program trajectory generation for a quadrotor with a cable-suspended payload, in Proc. IEEE Int. Conf. Robot. Autom. (Seattle, WA, USA), May 2015, pp. 2216-2222.
  18. J. Chen, T. Liu, and S. Shen, Online generation of collision-free trajectories for quadrotor flight in unknown cluttered environments, in Proc. IEEE Int. Conf. Robot. Autom. (Stockholm, Sweden), May 2016, pp. 1476-1483.
  19. H. Oleynikova et al., Continuous-time trajectory optimization for online uav replanning, IEEE/RSJ Int. Conf. Intel. Robot. Syst. (IROS), (Daejeon, South Korea), Oct. 2016, pp. 5332-5339.
  20. D. Wenchao et al., Trajectory replanning for quadrotors using kinodynamic search and elastic optimization, in Proc. IEEE Int. Conf. Robot. Autom. (Brisbane, Australia), May 2018, pp. 7595-7602.
  21. F. Gao, Y. Lin, and S. Shen, Gradient-based online safe trajectory generation for quadrotor flight in complex environments, in Proc. IEEE/RSJ Int. Conf. Intell. Robot. Syst. (IROS), (Vancouver, Canada), Sept. 2017, pp. 3681-3688.
  22. https://github.com/PointCloudLibrary/pcl/wiki
  23. GitHub Repository, https://github.com/yrlu/quadrotor
  24. https://dev.px4.io/v1.9.0/en/simulation/
  25. P. Martin and E. Salaun, The true role of accelerometer feedback in quadrotor control, in Proc. IEEE Int. Conf. Robot. Autom. (Anchorage, AK, USA), May 2010, pp. 1623-1629.
  26. http://wiki.ros.org/mavros
  27. F. Gao et al., Flying on point clouds: Online trajectory generation and autonomous navigation for quadrotors in cluttered environments, J. Field Robot. 36 (2019), no. 4, 710-733. https://doi.org/10.1002/rob.21842