Acknowledgement
Electronics and Telecommunications Research Institute (ETRI) grant funded by the Korean government (2017-0-00067, Development of ICT Core Technologies for Safe Unmanned Vehicles).
References
- R. Allen and M. Pavone, A real-time framework for kinodynamic planning with application to quadrotor obstacle avoidance, in Proc. AIAA Guid. Navig. Control Conf. (San Diego, CA, USA), Jan. 2016.
- S. Liu et al., Planning dynamically feasible trajectories for quadrotors using safe flight corridors in 3-d complex environments, IEEE Robot. Autom. Lett. 2 (2017), no. 3, 1688-1695. https://doi.org/10.1109/LRA.2017.2663526
- H. Oleynikova et al., Safe local exploration for replanning in cluttered unknown environments for microaerial vehicles, IEEE Robot. Autom. Lett. 3 (2018), no. 3, 1474-1481. https://doi.org/10.1109/lra.2018.2800109
- J. Zhang et al., Falco: Fast likelihood-based collision avoidance with extension to human-guided navigation, J. Field Robot. 37 (2020), no. 8, 1300-1313. https://doi.org/10.1002/rob.21952
- S. Liu et al., Search-based motion planning for quadrotors using linear quadratic minimum time control, IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), 2017 (2017), 2872-2879.
- J. Huh et al., Mobile robot exploration in indoor environment using topological structure with invisible barcodes, ETRI J. 29 (2007), no. 2, 189-200. https://doi.org/10.4218/etrij.07.0106.0066
- B. Park, J. Choi, and W. K. Chung, Incremental hierarchical roadmap construction for efficient path planning, ETRI J. 40 (2018), no. 4, 458-470. https://doi.org/10.4218/etrij.2018-0041
- S. M. LaValle, Rapidly-exploring random trees: A new tool for path planning, Iowa State University, Ames, IA, USA, Tech. Rep. TR 98-11, 1998.
- W.-K. Lee, I.-S. Kim, and Y.-D. Hong, Approach toward footstep planning considering the walking period: Optimizationbased fast footstep planning for humanoid robots, ETRI J. 40 (2018), no. 4, 471-482. https://doi.org/10.4218/etrij.2018-0058
- S. Noh et al., Co-pilot agent for vehicle/driver cooperative and autonomous driving, ETRI J. 37 (2015), no. 5, 1032-1043. https://doi.org/10.4218/etrij.15.0114.0095
- S. Liu et al., Search-based motion planning for aggressive flight in se (3), IEEE Robot. Autom. Lett. 3 (2018), no. 3, 2439-2446. https://doi.org/10.1109/lra.2018.2795654
- B. Zhou et al., Robust and efficient quadrotor trajectory generation for fast autonomous flight, IEEE Robot. Autom. Lett. 4 (2019), no. 4, 3529-3536. https://doi.org/10.1109/lra.2019.2927938
- D. Mellinger and V. Kumar, Minimum snap trajectory generation and control for quadrotors, in Proc. IEEE Int. Conf. Robot. Autom. (Shanghai, China), May 2011, pp. 2520-2525.
- C. Richter, A. Bry, and N. Roy, Polynomial trajectory planning for aggressive quadrotor flight in dense indoor environments, in Robotics Research, vol. 114, Springer, Cham, Switzerland, 2016, pp. 649-666.
- S. Grzonka, G. Grisetti, and W. Burgard, A fully autonomous indoor quadrotor, IEEE Trans. Robot. 28 (2011), no. 1, 90-100. https://doi.org/10.1109/TRO.2011.2162999
- D. Mellinger, A. Kushleyev, and V. Kumar, Mixed-integer quadratic program trajectory generation for heterogeneous quadrotor teams, in Proc. IEEE Int. Conf. Robot. Autom. (Saint Paul, MN, USA, 2012, pp. 477-483.
- S. Tang and V. Kumar, Mixed integer quadratic program trajectory generation for a quadrotor with a cable-suspended payload, in Proc. IEEE Int. Conf. Robot. Autom. (Seattle, WA, USA), May 2015, pp. 2216-2222.
- J. Chen, T. Liu, and S. Shen, Online generation of collision-free trajectories for quadrotor flight in unknown cluttered environments, in Proc. IEEE Int. Conf. Robot. Autom. (Stockholm, Sweden), May 2016, pp. 1476-1483.
- H. Oleynikova et al., Continuous-time trajectory optimization for online uav replanning, IEEE/RSJ Int. Conf. Intel. Robot. Syst. (IROS), (Daejeon, South Korea), Oct. 2016, pp. 5332-5339.
- D. Wenchao et al., Trajectory replanning for quadrotors using kinodynamic search and elastic optimization, in Proc. IEEE Int. Conf. Robot. Autom. (Brisbane, Australia), May 2018, pp. 7595-7602.
- F. Gao, Y. Lin, and S. Shen, Gradient-based online safe trajectory generation for quadrotor flight in complex environments, in Proc. IEEE/RSJ Int. Conf. Intell. Robot. Syst. (IROS), (Vancouver, Canada), Sept. 2017, pp. 3681-3688.
- https://github.com/PointCloudLibrary/pcl/wiki
- GitHub Repository, https://github.com/yrlu/quadrotor
- https://dev.px4.io/v1.9.0/en/simulation/
- P. Martin and E. Salaun, The true role of accelerometer feedback in quadrotor control, in Proc. IEEE Int. Conf. Robot. Autom. (Anchorage, AK, USA), May 2010, pp. 1623-1629.
- http://wiki.ros.org/mavros
- F. Gao et al., Flying on point clouds: Online trajectory generation and autonomous navigation for quadrotors in cluttered environments, J. Field Robot. 36 (2019), no. 4, 710-733. https://doi.org/10.1002/rob.21842