• 제목/요약/키워드: autonomous reconstruction

검색결과 44건 처리시간 0.034초

종방향 자율주행의 미지 고장 재건을 위한 순환 최소 자승 기반 적응형 슬라이딩 모드 관측기 개발 (Development of a RLS based Adaptive Sliding Mode Observer for Unknown Fault Reconstruction of Longitudinal Autonomous Driving)

  • 오세찬;송태준;이종민;오광석;이경수
    • 자동차안전학회지
    • /
    • 제13권1호
    • /
    • pp.14-25
    • /
    • 2021
  • This paper presents a RLS based adaptive sliding mode observer (A-SMO) for unknown fault reconstruction in longitudinal autonomous driving. Securing the functional safety of autonomous vehicles from unexpected faults of sensors is essential for avoidance of fatal accidents. Because the magnitude and type of the faults cannot be known exactly, the RLS based A-SMO for unknown acceleration fault reconstruction has been designed with relationship function in this study. It is assumed that longitudinal acceleration of preceding vehicle can be obtained by using the V2V (Vehicle to Vehicle) communication. The kinematic model that represents relative relation between subject and preceding vehicles has been used for fault reconstruction. In order to reconstruct fault signal in acceleration, the magnitude of the injection term has been adjusted by adaptation rule designed based on MIT rule. The proposed A-SMO in this study was developed in Matlab/Simulink environment. Performance evaluation has been conducted using the commercial software (CarMaker) with car-following scenario and evaluation results show that maximum reconstruction error ratios exist within range of ±10%.

국내 실사고 기반 자율주행차 교차로 사고 시뮬레이션 (Intersections Accident Simulation of Automated Vehicles based on Actual Accident Database)

  • 신윤식;박요한;신재곤;정재일
    • 자동차안전학회지
    • /
    • 제13권4호
    • /
    • pp.106-113
    • /
    • 2021
  • In this study, The behavior of an autonomous vehicle in an intersection accident situation is predicted. Based on a representative intersection accident situation from actual intersection accident database, simulation was performed by applying the automatic emergency braking algorithm used in the autonomous driving system. Accident reconstruction was performed based on the accident report of the representative accident situation. After applying the autonomous driving system to the accident-related vehicle, the tendency of intersection accidents that may occur in autonomous vehicles was identified and analyzed.

실도로 주행 조건 기반의 자율주행자동차 고위험도 평가 시나리오 개발 및 검증에 관한 연구 (A Study on Development of High Risk Test Scenario and Evaluation from Field Driving Conditions for Autonomous Vehicle)

  • 정승환;유제명;정낙승;유민상;편무송;김재부
    • 자동차안전학회지
    • /
    • 제10권4호
    • /
    • pp.40-49
    • /
    • 2018
  • Currently, a lot of researches about high risk test scenarios for autonomous vehicle and advanced driver assistance systems have been carried out to evaluate driving safety. This study proposes new type of test scenario that evaluate the driving safety for autonomous vehicle by reconstructing accident database of national automotive sampling system crashworthiness data system (NASS-CDS). NASS-CDS has a lot of detailed accident data in real fields, but there is no data of accurate velocity in accident moments. So in order to propose scenario generation method from accident database, we try to reconstruct accident moment from accident sketch diagram. At the same step, we propose an accident of occurrence frequency which is based on accident codes and road shapes. The reconstruction paths from accident database are integrated into evaluation of simulation environment. Our proposed methods and processor are applied to MILS (Model In the Loop Simulation) and VILS (Vehicle In the Loop Simulation) test environments. In this paper, a reasonable method of accident reconstruction typology for autonomous vehicle evaluation of feasibility is proposed.

스테레오 영상을 활용한 3차원 지도 복원과 동적 물체 검출에 관한 연구 (A Study of 3D World Reconstruction and Dynamic Object Detection using Stereo Images)

  • 서보길;윤영호;김규영
    • 한국산학기술학회논문지
    • /
    • 제20권10호
    • /
    • pp.326-331
    • /
    • 2019
  • 실제 환경에서는 움직이지 않는 정적 물체만큼이나 많은 수의 움직이는 동적 물체가 존재한다. 사람은 정적 물체와 동적 물체를 쉽게 구분할 수 있지만, 자율 주행 차량이나 모바일 로봇은 이를 구분하지 못한다. 따라서 차량이나 로봇이 성공적이고 안정적인 자율 주행을 수행하기 위해서는 정적 물체와 동적 물체를 정확하게 구분하는 것이 중요하다. 이를 수행하기 위해서 자율 주행 차량이나 모바일 로봇은 카메라, 라이다 등과 같은 다양한 센서 시스템을 활용할 수 있다. 그중에서 스테레오 카메라 영상은 자율 주행을 위해 많이 활용하는 데이터이다. 스테레오 카메라 영상은 물체 분할, 분류, 추적과 같은 물체 인식 분야는 물론 3차원 지도 복원과 같은 네비게이션 분야에 활용할 수 있다. 본 연구에서는 실시간으로 주행하는 차량과 로봇을 위하여 스테레오 영상을 활용한 정적/동적 물체 구분 방법을 제안하고, 향후 네비게이션 목적으로도 활용할 수 있도록 3차원 지도를 복원하여 이를 적용한 결과 및 성능 확인을 위한 정확도 분석 결과(99.81%)를 제시한다.

Surgical management of palatal teratoma (epignathus) with the use of virtual reconstruction and 3D models: a case report and literature review

  • Gonzalez-Cantu, Cynthia Minerva;Moreno-Pena, Pablo Juan;Salazar-Lara, Mayela Guadalupe;Garcia, Pablo Patricio Flores;Montes-Tapia, Fernando Felix;Cervantes-Kardasch, Victor Hugo;Castro-Govea, Yanko
    • Archives of Plastic Surgery
    • /
    • 제48권5호
    • /
    • pp.518-523
    • /
    • 2021
  • Epignathus is a rare congenital orofacial teratoma that arises from the sphenoid region of the palate or the pharynx. It occurs in approximately 1:35,000 to 1:200,000 live births representing 2% to 9% of all teratomas. We present the case of a newborn of 39.4 weeks of gestation with a tumor that occupied the entire oral cavity. The patient was delivered by cesarean section. Oral resection was managed by pediatric surgery. Plastic surgery used virtual 3-dimensional models to establish the extension, and depth of the tumor. Bloc resection and reconstruction of the epignathus were performed. The mass was diagnosed as a mature teratoma associated with cleft lip and palate, nasoethmoidal meningocele that conditions hypertelorism, and a pseudomacrostoma. Tridimensional technology was applied to plan the surgical intervention. It contributed to a better understanding of the relationships between the tumor and the adjacent structures. This optimized the surgical approach and outcome.

Role of the Observation Planning in Three-dimensional Environment for Autonomous Reconstruction

  • Moon, Jung-Hyun;You, Bum-Jae;Kim, Hag-Bae;Oh, Sang-Rok
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.37-42
    • /
    • 2005
  • This paper presents an autonomous system for reconstruction of three-dimensional indoor environments using a mobile robot. The system is composed of a mobile robot, a three-dimensional scanning system, and a notebook computer for registration, observation planning and real-time three-dimensional data transferring. Three-dimensional scanning system obtains three-dimensional environmental data and performs filtering of dynamic objects. Then, it registers multiple three-dimensional scans into one coordinate system and performs observation planning which finds the next scanning position by using the layered hexahedral-map and topological-map. Then, the mobile robot moves to the next scanning position, and repeats all procedures until there is no scanning tree in topological-map. In concurrence with data scanning, three-dimensional data can be transferred through wireless-LAN in real-time. This system is experimented successfully by using a mobile robot named KARA.

  • PDF

Autonomous exploration for radioactive sources localization based on radiation field reconstruction

  • Xulin Hu;Junling Wang;Jianwen Huo;Ying Zhou;Yunlei Guo;Li Hu
    • Nuclear Engineering and Technology
    • /
    • 제56권4호
    • /
    • pp.1153-1164
    • /
    • 2024
  • In recent years, unmanned ground vehicles (UGVs) have been used to search for lost or stolen radioactive sources to avoid radiation exposure for operators. To achieve autonomous localization of radioactive sources, the UGVs must have the ability to automatically determine the next radiation measurement location instead of following a predefined path. Also, the radiation field of radioactive sources has to be reconstructed or inverted utilizing discrete measurements to obtain the radiation intensity distribution in the area of interest. In this study, we propose an effective source localization framework and method, in which UGVs are able to autonomously explore in the radiation area to determine the location of radioactive sources through an iterative process: path planning, radiation field reconstruction and estimation of source location. In the search process, the next radiation measurement point of the UGVs is fully predicted by the design path planning algorithm. After obtaining the measurement points and their radiation measurements, the radiation field of radioactive sources is reconstructed by the Gaussian process regression (GPR) model based on machine learning method. Based on the reconstructed radiation field, the locations of radioactive sources can be determined by the peak analysis method. The proposed method is verified through extensive simulation experiments, and the real source localization experiment on a Cs-137 point source shows that the proposed method can accurately locate the radioactive source with an error of approximately 0.30 m. The experimental results reveal the important practicality of our proposed method for source autonomous localization tasks.

무인수상선의 디지털 트윈 공간 재구성을 위한 이미지 보정 및 점군데이터 간의 매핑 프레임워크 설계 (Design of a Mapping Framework on Image Correction and Point Cloud Data for Spatial Reconstruction of Digital Twin with an Autonomous Surface Vehicle)

  • 허수현;강민주;최진우;박정홍
    • 대한조선학회논문집
    • /
    • 제61권3호
    • /
    • pp.143-151
    • /
    • 2024
  • In this study, we present a mapping framework for 3D spatial reconstruction of digital twin model using navigation and perception sensors mounted on an Autonomous Surface Vehicle (ASV). For improving the level of realism of digital twin models, 3D spatial information should be reconstructed as a digitalized spatial model and integrated with the components and system models of the ASV. In particular, for the 3D spatial reconstruction, color and 3D point cloud data which acquired from a camera and a LiDAR sensors corresponding to the navigation information at the specific time are required to map without minimizing the noise. To ensure clear and accurate reconstruction of the acquired data in the proposed mapping framework, a image preprocessing was designed to enhance the brightness of low-light images, and a preprocessing for 3D point cloud data was included to filter out unnecessary data. Subsequently, a point matching process between consecutive 3D point cloud data was conducted using the Generalized Iterative Closest Point (G-ICP) approach, and the color information was mapped with the matched 3D point cloud data. The feasibility of the proposed mapping framework was validated through a field data set acquired from field experiments in a inland water environment, and its results were described.

자율주행 영상데이터의 신뢰도 향상을 위한 AI모델 기반 데이터 자동 정제 (AI Model-Based Automated Data Cleaning for Reliable Autonomous Driving Image Datasets)

  • 김가나;김학일
    • 방송공학회논문지
    • /
    • 제28권3호
    • /
    • pp.302-313
    • /
    • 2023
  • 본 연구는 과학기술정보통신부가 2017년부터 1조원 이상을 투자한 'AI Hub 댐' 사업에서 구축된 인공지능 모델 학습데이터의 품질관리를 자동화할 수 있는 프레임워크의 개발을 목표로 한다. 자율주행 개발에 사용되는 AI 모델 학습에는 다량의 고품질의 데이터가 필요하며, 가공된 데이터를 검수자가 데이터 자체의 이상을 검수하고 유효함을 증명하는 데는 여전히 어려움이 있으며 오류가 있는 데이터로 학습된 모델은 실제 상황에서 큰 문제를 야기할 수 있다. 본 논문에서는 이상 데이터를 제거하는 신뢰할 수 있는 데이터셋 정제 프레임워크를 통해 모델의 인식 성능을 향상시키는 전략을 소개한다. 제안하는 방법은 인공지능 학습용 데이터 품질관리 가이드라인의 지표를 기반으로 설계되었다. 한국정보화진흥원의 AI Hub을 통해 공개된 자율주행 데이터셋에 대한 실험을 통해 프레임워크의 유효성을 증명하였고, 이상 데이터가 제거된 신뢰할 수 있는 데이터셋으로 재구축될 수 있음을 확인하였다.