• Title/Summary/Keyword: autonomous control

Search Result 1,597, Processing Time 0.033 seconds

Autonomous Wall-Following of Wheeled Mobile Robots using Hybrid Control Approach (차륜형 이동로봇의 자율 벽면-주행을 위한 하이브리드 제어)

  • Lim, Mee-Seub;Lim, Joon-Hong;Oh, Sang-Rok
    • Proceedings of the KIEE Conference
    • /
    • 1999.07g
    • /
    • pp.3105-3107
    • /
    • 1999
  • In this paper, we propose a new approach to autonomous wall-following of wheeled mobile robots using hybrid control system. The hybrid control approach IS introduced to the motion control of nonholonomic mobile robots in the Indoor navigation problems. In hybrid control architecture, the discrete states are defined by the user-defined constraints, and the reference motion commands are specified In the abstracted motions. The hybrid control system applied to motion planning and autonomous navigation with obstacle avoidance In indoor navigation problem. Simulation results show that it is an effective method for the autonomous navigation in indoor environments.

  • PDF

Network-based Distributed Approach for Implementation of an Unmanned Autonomous Forklift (무인 자율 주행 지게차 구현을 위한 네트워크 기반 분산 접근 방법)

  • Song, Young-Hun;Park, Jee-Hun;Lee, Kyung-Chang;Lee, Suk
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.9
    • /
    • pp.898-904
    • /
    • 2010
  • Unmanned autonomous forklifts have a great potential to enhance the productivity of material handling in various applications because these forklifts can pick up and deliver loads without an operator and any fixed guide. There are, however, many technical difficulties in developing such forklifts including localization, map building, sensor fusion, control and so on. Implementation, which is often neglected, is one of practical issues in developing such an autonomous device. This is because the system requires numerous sensors, actuators, and controllers that need to be connected with each other, and the number of connections grows very rapidly as the number of devices grows. Another requirement on the integration is that the system should allow changes in the system design so that modification and addition of system components can be accommodated without too much effort. This paper presents a network-based distributed approach where system components are connected to a shared CAN network, and control functions are divided into small tasks that are distributed over a number of microcontrollers with a limited computing capacity. This approach is successfully applied to develop an unmanned forklift.

The Effect of Internal Control on Academic Procrastination among Middle School Students: The Moderating Roles of Autonomous Motivation and Parental Pressure on Academic Performance (중학생의 내부통제성이 학업지연행동에 미치는 영향: 자율적 동기와 부모의 학업성취압력의 조절효과)

  • Seung Hee Seo;Ju Hee Park
    • Human Ecology Research
    • /
    • v.61 no.3
    • /
    • pp.429-443
    • /
    • 2023
  • The purpose of this study was to investigate whether internal control, autonomous motivation of middle school students, and perceived parental pressure on academic performance affect academic procrastination, while verifying the moderating roles of autonomous motivation and parental pressure on academic performance. The participants were a total of 371 middle school students. Academic procrastination, internal control, autonomous motivation, and parental pressure on academic performance were measured using the Procrastination Inventory (Aitken, 1982) revised by Jeon and Park (2014), the Internal-External Control Scale (Ko, 2014), the Academic Self-Regulation Questionnaire (Ryan & Connell, 1989) revised by Kim (2002), and the Scale of Kang (2003), respectively. The collected data was analyzed using SPSS 26.0 and a Process Macro Model 2 (multiple additional modulation effect). The results of the study are summarized as follows. First, middle school students' internal control, autonomous motivation, and perceived parental pressure on academic performance directly affected the students's academic procrastination. Second, the moderating role of parental pressure on academic performance was significant. On the other hand, the moderating role of autonomous motivation was not significant. In conclusion, the results of this study suggest that in order to reduce and prevent academic procrastination it is important to improve internal control by helping middle school students become confident enough to believe that they have the ability to change their behavior and achieve their aims. At the same time, parents need to be interested in the process rather than only the academic performance of their children and support their autonomy.

Design and Control of a Six-degree of Freedom Autonomous Underwater Robot 'CHALAWAN'

  • Chatchanayuenyong, T.;Parnichkun, M.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1110-1115
    • /
    • 2004
  • Water covers two-thirds of the earth and has a great influence on the future existence of all human being. Thailand has extensive coastline and near shore water that contain vast biological and mineralogical resources. The rivers and canals can be found around the country especially in the Bangkok, which once called the Venice of the East. Autonomous underwater robot (AUR) will be soon a tool to help us better understand water resources and other environmental issues. This paper presents the design and basic control of a six-degree of freedom AUR "Chalawan", which was constructed to be used as a testbed for shallow. It is a simple low cost open-frame design, which can be modified easily to supports various research areas in the underwater environment. It was tested with a conventional proportional-integral-derivative (PID) controller. After fine-tuning of the controller gains, the results showed the controller's good performances. In the future, the dynamic model of the robot will be analyzed and identified. The advanced control algorithm will be implemented based on the obtained model.

  • PDF

Position Tracking Control of a Small Autonomous Helicopter by an LQR with Neural Network Compensation

  • Eom, Il-Yong;Jung, Se-Ul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1008-1013
    • /
    • 2005
  • In this paper, position tracking control of an autonomous helicopter is presented. Velocity is controlled by using an optimal state controller LQR. A position control loop is added to form a PD controller. To minimize a position tracking error, neural network is introduced. The reference compensation technique as a neural network control structure is used, and a position tracking error of an autonomous helicopter is compensated by neural network installed in the remotely located ground station. Considering time delays between an autonomous helicopter and the ground station, simulation studies have been conducted. Simulation results show that the LQR with neural network compensation performs better than that of the LQR itself.

  • PDF

A Linear Matrix Inequality Optima Control for the Tracking of an Autonomous Gliding Vehicle (자동 미끄럼 이동 로봇의 경로 추종을 위한 LMI 최적 제어 기법)

  • 이진우
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.335-335
    • /
    • 2000
  • Applications such as unmanned aerial vehicles (UAVs), autonomous underwater vehicles (AUVs) and the time varying nature of their navigation, guidance and control systems motivate an integrated approach to trajectory general ion and trajectory tracking for autonomous vehicles. In this paper, an experimental testbed was designed for studying this integrated trajectory control approach. In this paper we apply the separating approach to an autonomous nonlinear vehicle system. A new linear matrix inequality based H$_{\infty}$ control technique for periodic time-varying systems is applied to the role of trajectory tracking. Trajectory general ion is accomplished by exploit ing the differential flatness property of the vehicle system; this at lows product ion of desired feasible nominal or reference trajectories from certain ″flat'system outputs. Simulation and experimental results are presented showing stable tracking of a periodic circular trajectory.

  • PDF

Nominal Trajectories of an Autonomous Under-actuated Airship

  • Bestaoui Yasmina
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.4
    • /
    • pp.395-404
    • /
    • 2006
  • The objective of this paper is to generate a desired flight path to be followed by an autonomous airship. The space is supposed without obstacles. As there are six degrees of freedom and only three inputs for the LSC AS200 airship, three equality constraints appear due to the under-actuation.

A Ship Motion Control System for Autonomous Navigation (지능형 자율운항제어를 위한 선박운동제어시스템)

  • 이원호;김창민;최중락;김용기
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.9 no.6
    • /
    • pp.674-682
    • /
    • 2003
  • Ship autonomous navigation is designated as what computerizes mental faculties possessed of navigation experts, which are building navigation plans, grasping the situation, forecasting the fluctuation, and coping with the situation. An autonomous navigation system, which consists of several subsystems such as navigation system, a collision avoidance system, several data fusion systems, and a motion control system, is based on an intelligent control architecture for the sake of integrating the systems. The motion control system, which is one of the most essential system in autonomous navigation system, controls its propulsion and steering gears to move the ship satisfying its hydrodynamic characteristics. This paper is the study on the ship movement control system and its implementation which are totally developed and run on virtual-world system. Receiving the high-level control values such as a waypoint presented from the collision avoidance system, the motion control system generates them to low-level control values for propulsion and steering devices. In the paper, we develop a ship motion controller using Oldenburger's theory based on mathematical fundamentals, and simulate it with various scenarios in order to verify its performance.

Examination on Autonomous Recovery Algorithm of Piping System (배관 체계 자율 복구 알고리즘 비교, 분석 및 고찰)

  • Yang, Dae Won;Lee, Jeung-hoon;Shin, Yun-Ho
    • Journal of the Korean Society of Safety
    • /
    • v.36 no.4
    • /
    • pp.1-11
    • /
    • 2021
  • Piping systems comprising pumps and valves are essential in the power plant, oil, and defense industry. Their purpose includes a stable supply of the working fluid or ensuring the target system's safe operation. However, piping system accidents due to leakage of toxic substances, explosions, and natural disasters are prevalent In addition, with the limited maintenance personnel, it becomes difficult to detect, isolate, and reconfigure the damage of the piping system and recover the unaffected area. An autonomous recovery piping system can play a vital role under such circumstances. The autonomous recovery algorithms for the piping system can be divided into low-pressure control algorithms, hydraulic resistance control algorithms, and flow inventory control algorithms. All three methods include autonomous opening/closing logic to isolate damaged areas and recovery the unaffected area of piping systems. However, because each algorithm has its strength and weakness, appropriate application considering the overall design, vital components, and operating conditions is crucial. In this regard, preliminary research on algorithm's working principle, its design procedures, and expected damage scenarios should be accomplished. This study examines the characteristics of algorithms, the design procedure, and working logic. Advantages and disadvantages are also analyzed through simulation results for a simplified piping system.