• Title/Summary/Keyword: autonomous cars

Search Result 99, Processing Time 0.024 seconds

A Study on the Construal Level and Intention of Autonomous Driving Taxi According to Message Framing (해석수준과 메시지 프레이밍에 따른 자율주행택시의 사용의도에 관한 연구)

  • Yoon, Seong Jeong;Kim, Min Yong
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.3
    • /
    • pp.135-155
    • /
    • 2018
  • The purpose of this study is to analyze the difference of interpretation level and intention to use message framing when autonomous vehicle, which is emerging as the product of 4th industrial revolution, is used as taxi, Interpretation level refers to the interpretation of a product or service, assuming that it will happen in the near future or in the distant future. Message framing refers to the formation of positive or negative expressions or messages at the extremes of benefits and losses. In other words, previous studies interpret the value of a product or service differently according to these two concepts. The purpose of this study is to investigate whether there are differences in intention to use when two concepts are applied when an autonomous vehicle is launched as a taxi. The results are summarized as follows: First, the message format explaining the gain and why should be used when using the autonomous taxi in the message framing configuration, and the loss and how when the autonomous taxi is not used. Messages were constructed and compared. The two message framing differed (t = 3.063), and the message type describing the benefits and reasons showed a higher intention to use. In addition, the results according to interpretation level are summarized as follows. There was a difference in intentions to use when assuming that it would occur in the near future and in the near future with respect to the gain and loss, Respectively. In summary, in order to increase the intention of using autonomous taxis, it is concluded that messages should be given to people assuming positive messages (Gain) and what can happen in the distant future. In addition, this study will be able to utilize the research method in studying intention to use new technology. However, this study has the following limitations. First, it assumes message framing and time without user experience of autonomous taxi. This will be different from the actual experience of using an autonomous taxi in the future. Second, self-driving cars should technical progress is continuing, but laws and institutions must be established in order to commercialize it and build the infrastructure to operate the autonomous car. Considering this fact, the results of this study can not reflect a more realistic aspect. However, there is a practical limit to search for users with sufficient experience in new technologies such as autonomous vehicles. In fact, although the autonomous car to take advantage of the public transportation by taxi is now ready for the road infrastructure, and technical and legal public may not be willing to choose to not have enough knowledge to use the Autonomous cab. Therefore, the main purpose of this study is that by assuming that autonomous cars will be commercialized by taxi you can do to take advantage of the autonomous car, it is necessary to frame the message, why can most effectively be used to find how to deliver. In addition, the research methodology should be improved and future research should be done as follows. First, most students responded in this study. It is also true that it is difficult to generalize the hypotheses to be tested in this study. Therefore, in future studies, it would be reasonable to investigate the population of various distribution considering the age, area, occupation, education level, etc. Where autonomous taxi can be used rather than those who can drive. Second, it is desirable to construct various message framing of the questionnaire, but it is necessary to learn various message framing in advance and to prevent errors in response to the next message framing. Therefore, it is desirable to measure the message framing with a certain amount of time when the questionnaire is designed.

Localization of Mobile Users with the Improved Kalman Filter Algorithm using Smart Traffic Lights in Self-driving Environments

  • Jung, Ju-Ho;Song, Jung-Eun;Ahn, Jun-Ho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.5
    • /
    • pp.67-72
    • /
    • 2019
  • The self-driving cars identify appropriate navigation paths and obstacles to arrive at their destinations without human control. The autonomous cars are capable of sensing driving environments to improve driver and pedestrian safety by sharing with neighbor traffic infrastructure. In this paper, we have focused on pedestrian protection and have designed an improved localization algorithm to track mobile users on roads by interacting with smart traffic lights in vehicle environments. We developed smart traffic lights with the RSSI sensor and built the proposed method by improving the Kalman filter algorithm to localize mobile users accurately. We successfully evaluated the proposed algorithm to improve the mobile user localization with deployed five smart traffic lights.

Analysis on Handicaps of Automated Vehicle and Their Causes using IPA and FGI (IPA 및 FGI 분석을 통한 자율주행차량 핸디캡과 발생원인 분석)

  • Jeon, Hyeonmyeong;Kim, Jisoo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.20 no.3
    • /
    • pp.34-46
    • /
    • 2021
  • In order to accelerate the commercialization of self-driving cars, it is necessary to accurately identify the causes of deteriorating the driving safety of the current self-driving cars and try to improve them. This study conducted a questionnaire survey of experts studying autonomous driving in Korea to identify the causes of problems in the driving safety of autonomous vehicles and the level of autonomous driving technology in Korea. As a result of the survey, the construction section, heavy rain/heavy snow conditions, fine dust conditions, and the presence of potholes were less satisfied with the current technology level than their importance, and thus priority research and development was required. Among them, the failure of road/road facilities and the performance of the sensor itself in the construction section and the porthole, and the performance of the sensor and the absence of an algorithm were the most responsible for the situation connected to the weather. In order to realize safe autonomous driving as soon as possible, it is necessary to continuously identify and resolve the causes that hinder the driving safety of autonomous vehicles.

Personal Driving Style based ADAS Customization using Machine Learning for Public Driving Safety

  • Giyoung Hwang;Dongjun Jung;Yunyeong Goh;Jong-Moon Chung
    • Journal of Internet Computing and Services
    • /
    • v.24 no.1
    • /
    • pp.39-47
    • /
    • 2023
  • The development of autonomous driving and Advanced Driver Assistance System (ADAS) technology has grown rapidly in recent years. As most traffic accidents occur due to human error, self-driving vehicles can drastically reduce the number of accidents and crashes that occur on the roads today. Obviously, technical advancements in autonomous driving can lead to improved public driving safety. However, due to the current limitations in technology and lack of public trust in self-driving cars (and drones), the actual use of Autonomous Vehicles (AVs) is still significantly low. According to prior studies, people's acceptance of an AV is mainly determined by trust. It is proven that people still feel much more comfortable in personalized ADAS, designed with the way people drive. Based on such needs, a new attempt for a customized ADAS considering each driver's driving style is proposed in this paper. Each driver's behavior is divided into two categories: assertive and defensive. In this paper, a novel customized ADAS algorithm with high classification accuracy is designed, which divides each driver based on their driving style. Each driver's driving data is collected and simulated using CARLA, which is an open-source autonomous driving simulator. In addition, Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) machine learning algorithms are used to optimize the ADAS parameters. The proposed scheme results in a high classification accuracy of time series driving data. Furthermore, among the vast amount of CARLA-based feature data extracted from the drivers, distinguishable driving features are collected selectively using Support Vector Machine (SVM) technology by comparing the amount of influence on the classification of the two categories. Therefore, by extracting distinguishable features and eliminating outliers using SVM, the classification accuracy is significantly improved. Based on this classification, the ADAS sensors can be made more sensitive for the case of assertive drivers, enabling more advanced driving safety support. The proposed technology of this paper is especially important because currently, the state-of-the-art level of autonomous driving is at level 3 (based on the SAE International driving automation standards), which requires advanced functions that can assist drivers using ADAS technology.

Self-Driving and Safety Security Response : Convergence Strategies in the Semiconductor and Electronic Vehicle Industries

  • Dae-Sung Seo
    • International journal of advanced smart convergence
    • /
    • v.13 no.2
    • /
    • pp.25-34
    • /
    • 2024
  • The paper investigates how the semiconductor and electric vehicle industries are addressing safety and security concerns in the era of autonomous driving, emphasizing the prioritization of safety over security for market competitiveness. Collaboration between these sectors is deemed essential for maintaining competitiveness and value. The research suggests solutions such as advanced autonomous driving technologies and enhanced battery safety measures, with the integration of AI chips playing a pivotal role. However, challenges persist, including the limitations of big data and potential errors in semiconductor-related issues. Legacy automotive manufacturers are transitioning towards software-driven cars, leveraging artificial intelligence to mitigate risks associated with safety and security. Conflicting safety expectations and security concerns can lead to accidents, underscoring the continuous need for safety improvements. We analyzed the expansion of electric vehicles as a means to enhance safety within a framework of converging security concerns, with AI chips being instrumental in this process. Ultimately, the paper advocates for informed safety and security decisions to drive technological advancements in electric vehicles, ensuring significant strides in safety innovation.

Analysis of Autonomous Driving Vehicle and Korea's Competitiveness Strategy (자율주행차 현황분석과 한국의 경쟁력 확보 전략)

  • Yang, Eun-ji;Kang, Su-jin;Kwon, So-ei;Kim, Da-yeon;Kim, Ji-won;Lee, Yu-jeong;Hwang, Hye-jeong;Chang, Young-hyun
    • The Journal of the Convergence on Culture Technology
    • /
    • v.3 no.2
    • /
    • pp.49-54
    • /
    • 2017
  • In Korea, partial self-driving feature is added on Genesis G80, Tivoli 2017, and others, and full implementation is under evaluation. Tesla already completed test for full self-driving car, Tesla Model 'X'. Further adoption of self-driving car in market will bring benefits to the elderly and disabled, meanwhile traffic accident will be decreased. However, related regulations for traffic accident with autonomous car including ethical responsibility is not fully established yet. In addition, security and privacy issue of self-driving cars should be improved as well. In this paper, domestic researches and analysis status on autonomous car will be summarized, and proper activation model will be proposed for the previously described issues.

Big Data Analytics for Countermeasure System Against GPS Jamming (빅데이터 분석을 활용한 GPS 전파교란 대응방안)

  • Choi, Young-Dong;Han, Kyeong-Seok
    • Journal of Advanced Navigation Technology
    • /
    • v.23 no.4
    • /
    • pp.296-301
    • /
    • 2019
  • Artificial intelligence is closely linked to our real lives, leading innovation in various fields. Especially, as a means of transportation possessing artificial intelligence, autonomous unmanned vehicles are actively researched and are expected to be put into practical use soon. Autonomous cars and autonomous unmanned aerial vehicles are required to equip accurate navigation system so that they can find out their present position and move to their destination. At present, the navigation of transportation that we operate is mostly dependent on GPS. However, GPS is vulnerable to external intereference. In fact, since 2010, North Korea has jammed GPS several times, causing serious disruptions to mobile communications and aircraft operations. Therefore, in order to ensure safety in the operation of the autonomous unmanned vehicles and to prevent serious accidents caused by the intereference, rapid situation judgment and countermeasure are required. In this paper, based on big data and machine learning technology, we propose a countermeasure system for GPS interference that supports decision making by applying John Boyd's OODA loop cycle (detection - direction setting - determination - action).

Proposal on Active Self Charging and Operation of Autonomous Vehicle Using Solar Energy (태양광을 이용한 자율주행 자동차의 능동적 자가 충전 및 운행 제안)

  • Hur, Hyun-Woo
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.9
    • /
    • pp.85-94
    • /
    • 2022
  • In modern society, environmental and energy problems have caused to replace cars with environment friendly energy. Vehicles with internal combustion engine which use petroleum are one of the factors that influence global pollution due to environment problems such as fine dust and ozone layer destruction. In addition use of energies for automobile making resources to become depleted. To solve this limited oil energy problem by using other energy sources. To the problem using electric energy and green energy as alternative for a solution. Among environment friendly energies this paper studies the possibility of drive service for autonomous vehicles that self-charges using only solar energy and whether they can be used as pollution free and alternative energy for automobiles. Studies was researched based on published literature review, data from ministry of transportation and automobile companies. Also case of electric vehicle and prototype automobile using only solar energy and the theory of near future technologies. Many automakers are using electric cars as alternative energy. Also making efforts to use solar energy as an substitute energy source and as a way to supplement electricity. Results show that there is a potential on operating autonomous vehicle using only solar energy. Furthermore, it will be possible to use automobiles actively, also use and supply solar energy. This paper suggest the possibility of contributing to the future of the automotive industry.

Analysis and Classification of In-Vehicle Activity Based on Literature Study for Interior Design of Fully Autonomous Vehicle (완전 자율주행 자동차의 실내공간 설계를 위한 문헌연구 기반의 실내행위 분석 및 유형화)

  • Kwon, Ju Yeong;Ju, Da Young
    • Journal of the HCI Society of Korea
    • /
    • v.13 no.2
    • /
    • pp.5-20
    • /
    • 2018
  • The fully autonomous vehicle, which has been actively studied in a worldwide before commercialization, is expected to become a living space by securing time and space compared to existing automobile. For this reason, interior design of fully autonomous vehicle has become very important. To enhance passenger's experience and satisfaction in fully autonomous vehicle, it is necessary to design an optimized space that can support in-vehicle activities. For this purpose, efforts to analyze the passenger's in-vehicle activities should be preceded. However, there were limited studies that define space and in-Vehicle activities of fully autonomous vehicle in Korea. The purpose of this study is to suggest the guideline of the interior design of fully autonomous vehicle by analyzing and classifying the scope of activities that the passenger can perform within the vehicle. As a method of the study, literature studies on future concept cars, human lifetime behavior and consumer needs had been conducted. As a result in-vehicle activities could be applied in a fully autonomous vehicle. Four in-vehicle activities 'work', 'home life and personal care', 'relaxation' and 'conversation and hobby' had been derived through the analysis of in-vehicle activities. Based on the results, the interior design of fully autonomous vehicle guideline has been suggested. The study is significant because the result of the study can act as a basic study which considers the activities in the fully autonomous vehicle environment.

  • PDF

Design of Interior Space for Psychological Safety of Passengers according to In-Vehicle Activity of Fully Autonomous Vehicle (완전자율주행자동차 실내행위 유형에 따른 탑승자의 심리적 안전성 확보를 위한 실내 공간 설계)

  • Ryu, Ji Min;Kwon, Ju Yeong;Ju, Da Young
    • Science of Emotion and Sensibility
    • /
    • v.24 no.2
    • /
    • pp.13-24
    • /
    • 2021
  • In level 5 (mind-off) of autonomous driving, the autonomous vehicle passengers are expected to have various activities such as face-to-face meetings, working, relaxing, and watching movies. In particular, various changes in the interior space of the vehicle are expected. Moreover, according to the survey conducted by the American Automobile Association, 73% of the respondents reported that they were afraid to board autonomous vehicles. In level 5 of autonomous driving, the subject of safety was expected to be transferred to autonomous vehicles; thus, research should be conducted from the user's perspective. Recently, various studies have been conducted to secure the safety of fully autonomous vehicles. However, there are limited studies addressing the psychological safety of actual passengers. Therefore, this study conducted a questionnaire based on the AHP technique. Consequently, the automobile safety system's priority for securing passengers' psychological safety according to each type of indoor behavior was derived, and the interior space for securing the psychological stability of passengers was suggested based on the obtained results. This study offers a new direction for interior space design, satisfying the psychological safety of passengers. This study is important because it advocates that the interior environment of fully autonomous driving cars is expected to be designed to secure the user's psychological safety.