• Title/Summary/Keyword: automotive seat

Search Result 242, Processing Time 0.03 seconds

Flow Simulation for Structure Validation of Passenger Car Seat Cooling & Heating Module (승용차 시트 쿨링 & 히팅 모듈의 구조 타당성 검증을 위한 유동 전산모사)

  • Gao, Jia-Chen;Park, Seul-Hyun;Ma, Sang-Dong;Kim, Jae-Yeol
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.2
    • /
    • pp.108-113
    • /
    • 2019
  • Due to the special structure of the car seat, the heating and cooling module must be installed in a limited area resulting in difficulty in regards to achieving optimal cooling and heating efficiency. In order to solve these problems, this paper establishes a new structure for heating and cooling modules, verifies the structural feasibility of the thermoelectric module for cooling and heating the seat through fluid simulations, and verifies the proper design of the mechanical components of the thermoelectric module.

An Estimation of Comfort on the Automobile Driver Seat Korean Anthropometric Experiment (한국인 인체측정 실험에 의한 자동차 운전석의 안락감 평가)

  • 이영신;이석기;박세진
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.3
    • /
    • pp.61-72
    • /
    • 1996
  • In this paper, the driver seat comfort of eight automobiles was studied. The joint angles and anthropometric data of eleven subjects sitting on the seating buck were investigated using the instrument devices such as scale, goniometer, vernier calipers, protractor, Martin set. The joint angles of the most comfort posture were found by experiment and compared with previous studies. The anthropometric data of Korean(1992 year surveys) and American(1970∼1974 year) were applied to evaluate the driver seat layout of Korean automobile. The joint angles of the most comfort posture for eleven subjects were obtained with experimental results. The joint angles were agreed with reference angles. The driver seat layout was not suited to seat length and acceleratorseatpan forward distance in 5 percentiles female, pedal separation and seatpan-roof height in 95 percentiles male. Korean automobiles were not suited to seatpan length and steering wheelseatpan clearance, floor-roof height for American 95 percentiles male. The driver anthropometric dimensions were more suitable to middle size than small size automobiles.

  • PDF

A Study on the Optimum Driving Posture for Designing Comfortable Driving Workstation (안락한 운전좌석 설계를 위한 최적 운전자세 연구)

  • 권규식;이정우;박세진
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.22 no.52
    • /
    • pp.1-8
    • /
    • 1999
  • This study was conducted to collect data concerning the preferred driving postures and adopted seat adjustment levels and to grasp relationships among drivers' body sizes, postural angles, and adopted seat positions and angles. Also optimum driving posture and seat adjustment level estimation models were constructed. An experiment was conducted to investigate observed optimum driving posture, and seat adjustment level. Thirty-six subjects (male=20, female=16) was selected to include a wide range of percentiles in the dimensions important for automotive driving workstation design and to be representative of the automotive driving population in Korea. New guidelines and estimation models for optimum postural comfort were developed. There were significant differences between male and female in postural angles but not in seat adjustment levels. Taller subjects preferred a more open and reclined posture. Estimation models enable us to estimate the quantitative optimum driving posture and seat adjustment level with some drivers' physical dimensions.

  • PDF

Study on Structural Analysis due to Configuration of Seat Back Frame (시트 백 프레임의 형상에 따른 구조 해석에 관한 연구)

  • Kim, Sung-Soo;Choi, Hae-Kyu;Choi, Doo-Seuk;Kim, Sei-Hwan;Oh, Bum-Suk;Cho, Jae-Ung;Kook, Jeong-Han
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.3
    • /
    • pp.994-1001
    • /
    • 2012
  • The Automotive seat is the component related at passenger feeling and safety. It absorbs the impact or vibration and supplies the comfortableness. It must also have sufficient rigidity and strength to satisfy these given conditions. Two kinds of seat models are designed and studied by structural analysis. Seat back frame (b) has lower deformation and fatigue life than (a). Most deformation and damage possibility is shown at the waist, that is the middle of model. On the vibration analysis at which natural frequency is applied, model (a) has the deformation from outside to inside of model, but model (b) has the deformation from inside to outside of model. Model (b) is safer than model (a) structurally at most cases.

A Basic Study on Plastic Suspension System for Automotive Seat under Consideration of Body Pressure Distribution (체압 분포를 고려한 자동차 시트용 플라스틱 서스펜션에 대한 기초적 연구)

  • Park, Dae-Min;Kim, Key-Sun;Choi, Doo-Seuk;Kim, Sei-Whan;Park, Won-Sik;Cho, Jae-Ung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.11
    • /
    • pp.4751-4755
    • /
    • 2011
  • This study investigates the plastic suspension assembly which is installed on inside of vehicle seat and support passenger's back to supply the comfortable ride performance. It aims to develop the structural design in order to support driver's back uniformly and assemble seat back frame with plastic suspension effectively. The part of suspension is designed by considering the body pressure distribution of driver and it has the same size as the practical model on simulation analysis. It is confirmed that the analysis result of plastic suspension approaches the practical measured values and the better body pressure distribution can be obtained as compared with the existing wire type.

DESIGN GUIDELINE FOR THE IMPROVEMENT OF DYNAMIC COMFORT OF A VEHICLE SEAT AND ITS APPLICATION

  • JANG H.-K.
    • International Journal of Automotive Technology
    • /
    • v.6 no.4
    • /
    • pp.383-390
    • /
    • 2005
  • This study proposes an innovative design guideline to assist the evaluation and improvement of the dynamic comfort of vehicle seating. The existing evaluation method for the comfort of vehicle seating was investigated to broach problems in evaluation. It was found that the currently existing evaluation method employs the resonance frequency of the vibration system composed of the seat and the human body and the maximum vibration transmissibility. This study proposes a design guideline aimed at the enhancement of vibration transmission characteristics above the resonance range, particularly within the range of 10-18 Hz. In order to meet this guideline, a seat was constructed out of foam having a low damping coefficient. It was then installed in a vehicle for a driving test. The driving test confirmed the improvement of the dynamic comfort of the seat. The result of evaluation of the improved seat using the SEAT index, an industry standard widely used to evaluate the dynamic comfort of a seat considering the perceptivity characteristics of the human body, showed that the perceptive vibration transmission had reduced by more than $11\%$. The effect of the modification of seat foam was also verified through a subjective assessment of dynamic comfort of the seats.

Evaluation of Car Seat Using Reliable and Valid Vehicle Seat Discomfort Survey

  • Deros, Baba Md.;Daruis, Dian Darina Indah;Nor, Mohd Jailani Mohd
    • Industrial Engineering and Management Systems
    • /
    • v.8 no.2
    • /
    • pp.121-130
    • /
    • 2009
  • Subjective evaluation has always been regarded as a branch of social science research. Hence, in scientific and especially engineering points of view, its development is always taken for granted despite the importance of its effects on the design and development decisions. In the past, at least two automotive seat survey questionnaires have been developed with high statistical validity and reliability. Nonetheless, both were not local while subjective perception very much depends on demographic background factors. It is felt that since vehicle seat comfort is an important aspect in a seat design, a local sense should be put into the survey that is used as the subjective tool. The proposed vehicle seat discomfort survey questionnaire was developed in dual languages; English and Malay. Malay language is the national language of Malaysia, where the survey was tested. Beside inputs from literatures, key informant interviews helped in establishing the appropriate terms used as survey items. Three experimental runs on two different seats by 22 paid subjects showed that the developed questionnaire is reliable and valid. Furthermore, criterion validity analysis on the survey and previously developed survey showed significant correlation at 0.01 significance level.

Structure Analysis on Automotive Seat Recliner Housing with High Tension Steel Plate (고장력 강판으로 된 자동차 시트 리크라이너 하우징에 대한 구조 해석)

  • Cho, Ho-Sun;Kim, Key-Sun;Choi, Doo-Seuk;Kim, Young-Chun;Park, Sang-Heup;Oh, Bum-Suk;Cho, Jae-Ung;Kook, Jeong-Han
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.8
    • /
    • pp.3644-3649
    • /
    • 2013
  • Automotive seat recliner has the function to control the angle at the back of chair and has the relation close to the safety of seat. Therefore each of parts constituting the recliner is important and the recliner housing to protect these parts from various dynamic loads is also important. In this study, the recliner housing with t=3mm which is made of high tension steel plate(SPFC 980) is applied to actual automotive seat. The deformation is investigated through the durability tester. Deformation and equivalent stress are also analyzed by simulation analysis under the same condition with experiment. After recliners with thicknesses of 1mm and 2mm are modeled by bases of experimental and analysis values, deformation and equivalent stress are investigated through structural analysis.

A Study on the Durability Design of an Automotive Seat Frame (자동차 시트 프레임 구조의 내구성 향상 설계에 관한 연구)

  • 우창수;조현직;구정서;권재도
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.4
    • /
    • pp.50-57
    • /
    • 2004
  • Structural analysis and fatigue tests have been performed to develop design and evaluation technologies of automotive seat frames. Under the back moment loading condition, the numerical simulation unveiled the maximum stress up to the yield strength at the side frame bracket. To measure the stresses under the test condition, strain gauges were attached to some weakest points of the side frames. the measured strains are in good agreements with the CAE results. On the other hand, some fatigue tests have been performed using the side frame bracket specimens made of various welding types to evaluate their durabilities. From the fatigue tests and the numerical analyses, it was recommended that the bracket welding position should be moved upward.

Structural Strength Analysis at Cushion Frame and Back Frame of Automotive Seat (자동차 시트 쿠션 프레임 및 백 프레임의 구조 강도 해석)

  • Kim, Sung-Soo;Kim, Key-Sun;Choi, Doo-Seuk;Park, Sang-Heup;Kim, Sei-Hwan;Cho, Jae-Ung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.11
    • /
    • pp.4956-4962
    • /
    • 2012
  • Among the various parts of automobile, automotive seat is the most fundamental item that ride comfort can be evaluated as the direct contact part with human body. Automotive seat must have the sufficient rigidity and strength at the same time with ride comfort. In this study, cushion frame and back frame at car seat are modelled with 3D. There are structural simulation analyses about 3 kinds of tests on torsion strength, vertical load strength and back frame strength. In the analysis result, the initial total deformation and the permanent total deformation has the maximum values of 5.4821 mm and 0.02539mm respectively at the torsion strength test of cushion frame. Total deformations at front and rear end parts of cushion frame become the values of 2.1159mm and 0.0606mm respectively at the test of vertical load strength of cushion frame. In case of more than this load, the maximum value of total deformation also becomes 3.1739mm. The maximum value of total deformation becomes 0.18634mm at 3 kinds of the strength tests on back frame. By the study result of no excessive deformation and no fracture cushion frame and back frame at automotive seat, the sufficient rigidity and strength to guarantee the safety of passenger can be verified.