• Title/Summary/Keyword: automotive application

Search Result 939, Processing Time 0.022 seconds

Study on the Shear Characteristics by using the Hot Mechanical Piercing during the Hot Stamping Process (열간 기계적 피어싱을 이용한 핫스탬핑 전단특성 연구)

  • K. J. Park;J. M. Park;J. Y. Kong;J. Y. Kim;S. C. Yoon;J. S. Hyun;Y. D. Jung
    • Transactions of Materials Processing
    • /
    • v.32 no.2
    • /
    • pp.81-86
    • /
    • 2023
  • The hot stamping process is widely used for high strength of vehicle parts, with heating 900 ℃ or higher in a furnace and in-die quenching to achieve strength above 1.5 GPa of the quenchable boron alloyed steel 22MnB5. First of all, the hot stamping process consisted of heating, forming, quenching and trimming. In the trimming process case, the laser method has been conventionally adopted. For laser trimming process, it has the problems pertaining to low productivity and high cost while the hot stamping process, accordingly the trimming process need to investigate the research for alternative method. In order to overcome these issues, many research groups have studied the mechanical trim solution on the hot stamped parts at high temperature. In this study, the mechanical piercing was performed during the hot stamping process at the high temperature for overcome the disadvantages of laser cutting. Also, the process parameters such as piercing time after die closing, clearances of between die and punch were controlled for obtaining the reasonable shear characteristics.

A Study on the Construction of an Artificial Neural Network for the Experimental Model Transition of Surface Roughness Prediction Results based on Theoretical Models in Mold Machining (금형의 절삭가공에서 이론 모형 기반 표면거칠기 예측 결과의 실험적 모형 전환을 위한 인공신경망 구축에 대한 연구)

  • Ji-Woo Kim;Dong-Won Lee;Jong-Sun Kim;Jong-Su Kim
    • Design & Manufacturing
    • /
    • v.17 no.4
    • /
    • pp.1-7
    • /
    • 2023
  • In the fabrication of curved multi-display glass for automotive use, the surface roughness of the mold is a critical quality factor. However, the difficulty in detecting micro-cutting signals in a micro-machining environment and the absence of a standardized model for predicting micro-cutting forces make it challenging to intuitively infer the correlation between cutting variables and actual surface roughness under machining conditions. Consequently, current practices heavily rely on machining condition optimization through the utilization of cutting models and experimental research for force prediction. To overcome these limitations, this study employs a surface roughness prediction formula instead of a cutting force prediction model and converts the surface roughness prediction formula into experimental data. Additionally, to account for changes in surface roughness during machining runtime, the theory of position variables has been introduced. By leveraging artificial neural network technology, the accuracy of the surface roughness prediction formula model has improved by 98%. Through the application of artificial neural network technology, the surface roughness prediction formula model, with enhanced accuracy, is anticipated to reliably perform the derivation of optimal machining conditions and the prediction of surface roughness in various machining environments at the analytical stage.

A Study on the Applicability of IoT for Container Terminal (컨테이너 터미널의 사물인터넷(IoT) 적용가능성에 관한 연구)

  • Jeon, Sang-Hyeon;Kang, Dal-Won;Min, Se-Hong;Kim, Si-Hyun
    • Journal of Korea Port Economic Association
    • /
    • v.36 no.2
    • /
    • pp.1-18
    • /
    • 2020
  • The Internet of things (IoT) has been applied to a variety of industrial uses such as public service sectors, medical industries, automotive industries, and so on. Led by smart cities, this is typical. However, from a logistics perspective, the level of application is insufficient. This study examines the applicability of IoT-related technology in a container terminal, an object of the present invention, to derive an applicable plan. Analytic network process (ANP) analysis reveals the following results for IoT applications in container terminals: operating systems (26.7%), safety/environmental/security systems (26.4%), equipment maintenance systems (25.3%), and facility maintenance systems (21.6 %). The second ANP analysis reveals the following results: Economy (40.2%), productivity (21.1%), service level (19.5%), and utilizing technology level (19.2%). The application or standard of evaluation is important when applying IoT technology to container terminals; however, it is not concentrated in a certain area. It is desirable to build each container system with linkage and efficiency from a macroscopic view.

Evaluation of Resistance Spot Weldability of SGAFC1180 Steel (SGAFC1180 TRIP강재의 저항 점용접성 평가)

  • Shin, Seok-Woo;Lee, Jong-Hun;Kim, Dae-Hwan;Park, Sang-Heup
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.12
    • /
    • pp.644-649
    • /
    • 2017
  • In the automobile industry, there is growing demand for lightweight vehicles due to environmental problems and rising oil prices. Therefore, aluminum alloys and special materials are being used to reduce the weight of vehicles, but there are still many difficulties to overcome in terms of cost and strength. Therefore, the application of advanced high strength steel (AHSS)is increasing. AHSS has good strength and formability.Safety regulations are becoming stricter, and 1.2-GPa super-high-strength steels are gradually being applied for the center pillar and roof rails. Thus, the application of different kinds of steels in automobile bodiesis also increasing gradually. This study evaluates the resistance point weldability and the characteristics of a welded part of SGAFC1180 1.2t steel. A simulation was used to observe the nugget formation and its growth behavior. The prediction performance showed a similar tendency within an error rate of 10%. Also, the effect of this behavior on the process resistance and dynamic resistance was investigated,along with the correlation between the shear tensile strength and nugget diameter.

A Study on the Scheme of Implementing Meta-data Based Applications for Enterprises (메타 데이터 기반의 기업용 애플리케이션 구축 방안에 관한 연구)

  • Jang, Gil-Sang
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.9
    • /
    • pp.135-145
    • /
    • 2009
  • Generally, the phases of constructing information systems are consisted of systems planning and selection, system analysis, system design, and system implementation and operation. These systems require many efforts and costs for additional development of modification requirements due to a frequent changes of business environments and business processes. Especially, inconsistencies between system design and system implementation usually happen during development steps because of the difficulties of program developments due to difficulties of capturing exact user requirements and frequent changes of user requirements. This paper proposes a scheme of implementing meta-data based applications for enterprises in order to reduce inconsistencies between system design and system implementation and to overcome limits of the existing coding-based development methods of applications which must use until disuse if they are developed once. Also, this paper presents a framework of repository system to systematically manage and utilize meta-data. The core concept of the proposed scheme makes outputs generated in the phases of system analysis and design into meta-data and is to easily develop and customize application programs using meta-data repository. Also, to show the applicability of the proposed scheme, it is applied to implement ERP system of 'H' automotive part manufacturer. As a result, the proposed scheme can gain improvements such as easiness and productivity of program development, easiness of maintenance, reusability of program components, etc.

Evaluation of Signal Stability of Fiber Optic Sensors with respect to Sensor Packaging Methods in Long-Term Monitoring (장기 모니터링 환경에서 센서 패키징 방법에 따른 광섬유 센서의 신호 안정성 평가)

  • Kang, Donghoon;Kim, Heon-Young;Kim, Dae-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.36 no.4
    • /
    • pp.281-287
    • /
    • 2016
  • Fiber Bragg grating (FBG) sensors are applied in structural health monitoring (SHM) in various application fields because of their ease of multiplexing and capability of performing absolute measurements. Moreover, the packaging methods of FBG sensors accelerate their commercialization rapidly. However, long-term SHM exposes the FBG sensors to cyclic thermal loads, and a investigation is required because it finally leads to the signal instability of the FBG sensors. In this study, the effects of sensor packaging methods two methods are generally used for the FBGs: (bonding both sides of the FBG or bonding the FBG directly on signal stability of FBG sensors are investigated. Tests are conducted on specimens in a thermal chamber, over a temperature range from $-20^{\circ}C$ to $60^{\circ}C$ for 300 cycles. Signal characteristics such as Bragg wavelength, light intensity and full width at half maximum are examined and are compared with those of the FBG sensors, obtained in a previous study under direct bonding conditions. From the comparison, it is observed that the FBG sensors with bonding on both sides of the FBG demonstrate higher signal stabilities when exposed to cyclic thermal loads during long-term SHM. Consequently, it guarantees more effectiveness when packaging the FBG sensors.

A Theoretical Study on Quantitative Prediction and Evaluation of Thermal Residual Stresses in Metal Matrix Composite (Case 1 : Two-Dimensional In-Plane Fiber Distribution) (금속기지 복합재료의 제조 및 성형시에 발생하는 열적잔류응력의 정량적 평가 및 예측에 관한 이론적 연구 (제 1보 : 강화재가 2차원 평면상태로 분포하는 경우))

  • Lee, Joon-Hyun;Son, Bong-Jin
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.17 no.2
    • /
    • pp.89-99
    • /
    • 1997
  • Although discontinuously reinforced metal matrix composite(MMC) is one of the most promising materials for applications of aerospace, automotive industries, the thermal residual stresses developed in the MMC due to the mismatch in coefficients of thermal expansion between the matrix and the fiber under a temperature change has been pointed out as one of the serious problem in practical applications. There are very limited nondestructive techniques to measure the residual stress of composite materials. However, many difficulties have been reported in their applications. Therefore it is important to establish analytical model to evaluate the thermal residual stress of MMC for practical engineering application. In this study, an elastic model is developed to predict the average thermal residual stresses in the matrix and fiber of a misoriented short fiber composite. The thermal residual stresses are induced by the mismatch in the coefficient of the thermal expansion of the matrix and fiber when the composite is subjected to a uniform temperature change. The model considers two-dimensional in-plane fiber misorientation. The analytical formulation of the model is based on Eshelby's equivalent inclusion method and is unique in that it is able to account for interactions among fibers. This model is more general than past models to investigate the effect of parameters which might influence thermal residual stress in composites. The present model is to investigate the effects of fiber volume fraction, distribution type, distribution cut-off angle, and aspect ratio on thermal residual stress for in-plane fiber misorientation. Fiber volume fraction, aspect ratio, and distribution cut-off angle are shown to have more significant effects on the magnitude of the thermal residual stresses than fiber distribution type for in-plane misorientation.

  • PDF

Hot-Carrier Degradation of NMOSFET (NMOSFET의 Hot-Carrier 열화현상)

  • Baek, Jong-Mu;Kim, Young-Choon;Cho, Moon-Taek
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.12
    • /
    • pp.3626-3631
    • /
    • 2009
  • This study has provided some of the first experimental results of NMOSFET hot-carrier degradation for the analog circuit application. After hot-carrier stress under the whole range of gate voltage, the degradation of NMOSFET characteristics is measured in saturation region. In addition to interface states, the evidences of hole and electron traps are found near drain depending on the biased gate voltage, which is believed to the cause for the variation of the transconductance($g_m$) and the output conductance($g_{ds}$). And it is found that hole trap is a dominant mechanism of device degradation in a low-gate voltage saturation region, The parameter degradation is sensitive to the channel length of devices. As the channel length is shortened, the influence of hole trap on the channel conductance is increased. Because the magnitude of $g_m$ and $g_{ds}$ are increased or decreased depending on analog operation conditions and analog device structures, careful transistor design including the level of the biased gate voltage and the channel length is therefore required for optimal voltage gain ($A_V=g_m/g_{ds}$) in analog circuit.

Effect of a Supplementary Pole on the Structural Stability in the Single-span Plastic Greenhouses (단동하우스에서의 보강지주 설치 효과)

  • Yum, Sung-Hyun;Kim, Seoung-Hee;Lee, Sang-Bong;Kim, Min-Young;Kim, Chul-Soo
    • Journal of Bio-Environment Control
    • /
    • v.19 no.2
    • /
    • pp.63-69
    • /
    • 2010
  • This study was implemented to clarify the effect of a supplementary pole on the increment of safety snow-depth for the single-span plastic greenhouses which had been run as standardized facilities for 10 to 15 years till April, 2007. In the previous work, some of the basic ideas of the use of a temporary pole were discussed, but application was restricted to both 2-D and the cases which took rafter's specifications into no consideration, and there was also much less experimental information available. So, by modeling the house as the 3-D frame structure, the present study attempted to provide a comprehensive review of the pole's effect through structural analyses as well as measurements. Structural analyses abnormally revealed that the pole regardless of its interval had a negative effect on the structural stability. The results was certainly inconsistent with practical experience and hence implied a necessity of reinforcing the roof purlin. Accordingly, with the purlin being sufficiently reinforced, the plastic greenhouse with the pole's interval of 3~4 m had two times safety snow-depth more than that of the plastic greenhouse without the pole. And the safety snow-depth of five types of the single-span plastic greenhouses according to the pole's intervals was presented.

A fundamental study on the ventilation analysis method for the network-type tunnel - focused on the none hardy-cross method (네트워크형 터널의 환기해석 방법에 대한 기초연구-비 Hardy-Cross 방법을 중심으로)

  • Kim, Hyo-Gyu;Choi, Pan-Gyu;Ryu, Ji-Oh;Lee, Chang-Woo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.18 no.3
    • /
    • pp.291-303
    • /
    • 2016
  • Recently, various forms of diverging sections in tunnels have been designed as the demand for underground passageway in urban areas increases. Therefore, the complexity of the ventilation system in tunnels with diverging sections requires a ventilation analysis method different from the conventional method for the straight tunnels. None of the domestic and foreign tunnel ventilation design standards specifies the method for the ventilation network analysis, and the numerical analysis methods have been most widely used. This paper aims at reviewing the ventilation network analytical method applicable as the design standard. The proposed method is based on the characteristic equations rather than the numerical analysis. Thanks to the advantages of easy application, the Hardy-Cross method has been widely applied in the fields of mine ventilation and tunnel ventilation. However, limitations with the cutting errors in the Taylor series expansion and the convergence problem mainly caused by the mesh selection algorithm have been reported. Therefore, this paper examines the applicability of the ventilation analysis method for network-type tunnels with the gradient method that can analyze flow rate and pressure simultaneously without the configuration of mesh. A simple ventilation analysis method for network-type tunnels is proposed.