• Title/Summary/Keyword: automated highway systems

Search Result 29, Processing Time 0.02 seconds

A Design of Cruise Control System for Automated Vehicle using Variable Structure Control Method (가변구조 제어 기법을 이용한 차량 순항 제어기 설계)

  • Lim, Jung-Taek;Choi, Won-Chul;Kim, Young-Joong;Lim, Myo-Taeg
    • Proceedings of the KIEE Conference
    • /
    • 2003.07d
    • /
    • pp.2173-2175
    • /
    • 2003
  • This paper presents a cruise control system design using variable structure control (AVCS) is an important part of the intelligent vehicle and highway systems (IVHS). A vehicle desired acceleration profile has been designed based on the vehicle speed and distance control algorithm. Cruise control system has been designed using VSC theory for which we propose a moving switching surface(MSS). It has been shown that the proposed control system can provide satisfactory performance. Simulation results are given to show the effectiveness of this controller.

  • PDF

A Study on the Conceptual Design and Technical Feasibility Analysis for the Development of Automated Pavement Crack Sealer (도로면 크랙실링 자동화장비의 실용화를 위한 개념 디자인 및 기술적 타당성 분석에 관한 연구)

  • Lee, Won-Jae;An, Chi-Hoon;Yoo, Hyun-Seok;Lee, Jeong-Ho;Kim, Young-Suk
    • Korean Journal of Construction Engineering and Management
    • /
    • v.12 no.5
    • /
    • pp.103-116
    • /
    • 2011
  • Crack sealing is a maintenance technique commonly used to prevent water and debris penetration and reduce future degradation in pavement. In recent years, several systems for automatically routing and sealing pavement cracks have been developed in the highway construction and maintenance area. Automating pavement crack sealing can improve safety, productivity and quality, and reduce road user cost as well. The reduction in crew size and the increase in productivity of the automated sealing process will be translated directly into significant potential cost savings. The main objective of this study is to illustrate conceptual models for the development of the automated pavement crack sealer which meets domestic road condition and regulation, and to discuss its technical feasibilities. Conclusions are made concerning the applicability and the value of cantilever-typed pavement crack which is selected as the most feasible alternative in both economical and technical aspects.

Highway Incident Detection and Classification Algorithms using Multi-Channel CCTV (다채널 CCTV를 이용한 고속도로 돌발상황 검지 및 분류 알고리즘)

  • Jang, Hyeok;Hwang, Tae-Hyun;Yang, Hun-Jun;Jeong, Dong-Seok
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.2
    • /
    • pp.23-29
    • /
    • 2014
  • The advanced traffic management system of intelligent transport systems automates the related traffic tasks such as vehicle speed, traffic volume and traffic incidents through the improved infrastructures like high definition cameras, high-performance radar sensors. For the safety of road users, especially, the automated incident detection and secondary accident prevention system is required. Normally, CCTV based image object detection and radar based object detection is used in this system. In this paper, we proposed the algorithm for real time highway incident detection system using multi surveillance cameras to mosaic video and track accurately the moving object that taken from different angles by background modeling. We confirmed through experiments that the video detection can supplement the short-range shaded area and the long-range detection limit of radar. In addition, the video detection has better classification features in daytime detection excluding the bad weather condition.

LiDAR Static Obstacle Map based Position Correction Algorithm for Urban Autonomous Driving (도심 자율주행을 위한 라이다 정지 장애물 지도 기반 위치 보정 알고리즘)

  • Noh, Hanseok;Lee, Hyunsung;Yi, Kyongsu
    • Journal of Auto-vehicle Safety Association
    • /
    • v.14 no.2
    • /
    • pp.39-44
    • /
    • 2022
  • This paper presents LiDAR static obstacle map based vehicle position correction algorithm for urban autonomous driving. Real Time Kinematic (RTK) GPS is commonly used in highway automated vehicle systems. For urban automated vehicle systems, RTK GPS have some trouble in shaded area. Therefore, this paper represents a method to estimate the position of the host vehicle using AVM camera, front camera, LiDAR and low-cost GPS based on Extended Kalman Filter (EKF). Static obstacle map (STOM) is constructed only with static object based on Bayesian rule. To run the algorithm, HD map and Static obstacle reference map (STORM) must be prepared in advance. STORM is constructed by accumulating and voxelizing the static obstacle map (STOM). The algorithm consists of three main process. The first process is to acquire sensor data from low-cost GPS, AVM camera, front camera, and LiDAR. Second, low-cost GPS data is used to define initial point. Third, AVM camera, front camera, LiDAR point cloud matching to HD map and STORM is conducted using Normal Distribution Transformation (NDT) method. Third, position of the host vehicle position is corrected based on the Extended Kalman Filter (EKF).The proposed algorithm is implemented in the Linux Robot Operating System (ROS) environment and showed better performance than only lane-detection algorithm. It is expected to be more robust and accurate than raw lidar point cloud matching algorithm in autonomous driving.

Comparison Analysis of the Road Environment between Urban and Suburban Area for Connected and Automated Driving(CAD) Mobility Services (교통소외지역 자율주행 모빌리티 서비스를 위한 도로 환경 분석 : 대구광역시와 세종특별자치시를 중심으로)

  • Kim, Ahreum;Woo, Boram;Tak, Sehyun;Lim, Seohyun
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.5
    • /
    • pp.287-300
    • /
    • 2022
  • The introduction of Connected and Automated(CAD) technology has a growing interests especially in areas with low demand for transport, where often the local transport services do not connect to peripheral areas for more efficient and convenient mobility services. However, there are few researches on CAD-based mobility services in areas with low demand for transport. Because current researches are mainly focuses on introduction of CAD-based mobility services in area with high demand for transport such as urban and highway. These two areas have different road environments and these differences require different driving technology especially related to Operational Design Domain(ODD). ODD is important factors for introduction of CAD-based mobility services. Therefore, we compare the road environments of areas with low demand for transport and areas with high demand for transport in terms of ODD. In addition, this paper proposes suggest guidance for the introduction of CAD-based mobility services in areas with low demand for transport such as rural and suburban areas.

Prioritization of Potential Technology for Establishing a Safe Work Zone Environment (안전한 도로 공사구간 환경 구축에 필요한 기술의 우선순위 선정)

  • Kim, Jin Guk;Yang, Choong Heon;Yun, Duk Geun
    • International Journal of Highway Engineering
    • /
    • v.17 no.6
    • /
    • pp.117-126
    • /
    • 2015
  • PURPOSES : This study prioritizes potential technology for establishing a safe work zone environment on roadways. We consider almost all conceivable technologies that enable mitigation of unexpected accidents for both road workers and drivers. METHODS : This study suggests a methodology to set the priority of potential technology for establishing a safe work zone environment by using the analytical hierarchy process (AHP). For this purpose, the AHP structure was first developed. Thereafter, a web-based survey was conducted to collect experts' opinions. Based on the survey results, weights associated with the relevant criteria of the developed structure were estimated. With the consistency index (CI) and consistency ratio (CR), we verified the estimated weights. In addition, a sensitivity analysis was performed to confirm whether the estimated weights were reliable. We finally proposed the priority for potential technology for establishing a safe work zone environment on roadways. RESULTS : In the first level, safety technology has the highest priority, and real-time information delivery for work zone, hazard warning for drivers, and temporal automated operation for traffic facilities were selected in the second level of hierarchy. CONCLUSIONS : The results imply that establishing the priority will be useful to establish a future road map for improving the work environment for road workers and drivers by employing appropriate protection facilities and developing safety systems.

Effect Analysis on the Location of Automated Speed Enforcement System in Highway (고속도로 고정식 과속단속시스템 설치위치별 효과분석)

  • Park, Je-Jin;Kim, Joong-Hyo;Park, Tae-Hoon;Ha, Tae-Jun
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.6 no.1 s.12
    • /
    • pp.27-37
    • /
    • 2007
  • The automatic speed enforcement system is expected to play an important role as intelligent transport system (ITS) or advanced franc management system (ATMS). It must be a reliable system checking the overspeedy vehicles automatically, while savine the police manpower and ensuring a safe traffic flow. In terms of traffic engineering, the automatic speed enforcement system may serve to improve driver's violent behaviors, facilitate the smooth and safe traffic flow and thereby, reduce the traffic accident. This study was aimed at analyzing the accident before and after installation of the automatic speed enforcement systems at the frequency, EPDO(equivalent property damage only) and accident cost, analyzing the effects of the automatic system on the traffic flow and accident. As a result, when we equip the automatic speed enforcement system on the downward slope section or after middle section comparing with whole section. We should consider the location of automatic speed enforcement system.

  • PDF

In-vehicle Dilemma Zone Warning System at Signalized Intersections (신호교차로 내 딜레마구간 차내경고시스뎀 개발)

  • Moon Young-Jun;Lee Joo-Il
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.2 no.1 s.2
    • /
    • pp.53-62
    • /
    • 2003
  • This paper demonstrates the in-vehicle dilemma zone warning system (DZWS) project developed as a part of the Driver Advisory and Collision Warning System in Automated Vehicle and Highway System (AVHS). The DZWS project, one of the Korea national ITS projects in 2000 develops the in-vehicle warning device to support drivers' decision making on whether to stop or to proceed to clear the intersection prior to the onset of yellow signal for avoiding the high risk of collision at signalized intersections through the dedicated short range communication (DSRC). This paper explores the design of optimal communication systems between roadway and vehicles, the operational and functional concepts of dilemma zone warning system based on appropriate approach speeds, and the system integration for field test at two sites of signalized intersections. Findings from the system integration indicated that the system would be implemented in eliminating the dilemma zone relative to approach speeds and in reducing red light violations and intersection collisions through the in-vehicle warning device at signalized intersection.

  • PDF

Analysis of Driving and Environmental Impacts by Providing Warning Information in C-ITS Vehicles Using PVD (PVD를 활용한 C-ITS 차량 내 경고정보 제공에 따른 주행 및 환경영향 분석)

  • Yoonmi Kim;Ho Seon Kim;Kyeong-Pyo Kang;Seoung Bum Kim
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.5
    • /
    • pp.224-239
    • /
    • 2023
  • C-ITS (Cooperative-Intelligent Transportation System) refers to user safety-oriented technology and systems that provide forward traffic situation information based on a two-way wireless communication technology between vehicles or between vehicles and infrastructure. Since the Daejeon-Sejong pilot project in 2016, the C-ITS infrastructure has been installed at various locations to provide C-ITS safety services through highway and local government demonstration projects. In this study, a methodology was developed to verify the effectiveness of the warning information using individual vehicle data collected through the Gwangju Metropolitan City C-ITS demonstration project. The analysis of the effectiveness was largely divided into driving behavior impact analysis and environmental analysis. Compliance analysis and driving safety evaluation were performed for the driving impact analysis. In addition, to supplement the inadequate collection of Probe Vehicle Data (PVD) collected during the C-ITS demonstration project, Digital Tacho Graph ( DTG ) data was additionally collected and used for effect analysis. The results of the compliance analysis showed that drivers displayed reduced driving behavior in response to warning information based on a sufficient number of valid samples. Also, the results of calculating and analyzing driving safety indicators, such as jerk and acceleration noise, revealed that driving safety was improved due to the provision of warning information.